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Abstract. In this paper, we establish some best proximity point theorems using new proximal
contractive mappings in asymmetric Gp-metric spaces. Our motive is to find an optimal
approximate solution of a fixed point equation. We provide best proximity points for cyclic
contractive mappings in Gp-metric spaces. As consequences of these results, we deduce fixed
point results in G-metric spaces. We also provide examples to analyze and support our
results.
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1. Introduction

Fixed point theory mainly concerns with the fixed point equation Tz = x, where
T : A — B is some nonlinear operator. The solution of this equation is known as fixed
point of the operator T'. But it is not necessary that the equation has a solution. In
that case when T has no fixed point, best approximation results provide an approximate
solution to the fixed point equation Tz = x. Best proximity point results provide optimal
approximate solution of the fixed point equation, in this case we may find an element
x € A which is closest to T'x; that is, the distance between T'x and x is least as compare
to other elements of A. Such a point is called the best proximity point of 7. Many
researchers have directed their attention to this field and proved best proximity point
theorems in various settings (see [5, 6, 20, 24, 25, 28]).
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On the other hand, Zand and Nezhad [30] introduced the notion of Gp,-metric spaces
which are a combination of the notions of partial metric spaces and G-metric spaces
(also, see [1]).

Definition 1.1 [30] Let X be a nonempty set. A function G, : X x X x X — [0,00) is
called a Gp-metric if the following conditions are satisfied:

(GPl) T = y =z lf Gp(x’y> Z) = Gp(zv Za Z) = Gp(yayvy) = Gp(IE,I‘,CL');

(GP2) 0 < Gp(z,z,7) < Gp(z,z,y) < Gp(z,y, 2) for all z,y,z € X;

(GP3) Gp(x,y,2) = Gy, 2,y) = Gp(y, z,x) = ..., symmetry in all three variables;
(GP4) Gp(z,y,2) < Gp(x,a,a) + Gpla,y, z) — Gp(a,a,a) for any z,y,2,a € X.

Then the pair (X, G)) is called a G)-metric space.

A number of authors have published many fixed point results on the setting of general-
ized metric spaces (see [4-30]). By inspiring this research many authors proved fixed and
best proximity point results in Gp-metric spaces. With the (GP2) condition it is easy to
see that Gp(z,z,y) = Gp(x,y,y) holds for all z,y € X, this implies the space is symmet-
ric. But then the claim in [30] that each G-metric space is also Gp-metric space is false,
since it is well known that the condition of symmetry might not hold in G-metric space.
Then to overcome this problem Parvaneh et al. [19] replaced (GP2) by the condition
following

0 < Gp(z,z,2) < Gp(z,z,y) < Gp(z,y, 2) Va,y,z € X with y # z.
This definition implies that in each case G-metric space is G,-metric space, but a G-

metric space might be asymmetric.

Ezxample 1.2 [30] Let X = [0,00) and G,(z,y,2) = max{|z —y|, |y — z|,|z — z|} for
all z,y,2z € X. Then (X, G)) is a symmetric G,-metric space.

Example 1.3 [19] Let X = {0,1,2,3} and

A =1{(1,0,0),(0,1,0),(0,0,1),(2,0,0), (0,2,0), (0,0,2), (
(1,2,2),(2,1,2),(2,2,1),(1,3,3,),(3,1,3),(3,3,1), (
B ={(0,1,1),(1,0,1),(1,1,0),(0,2,2),(2,0,2),(2,2,0), (
(2,1,1),(1,2,1),(1,1,2),(3,1,1),(1,3,1),(1,1,3),(3,2,2

3,0,0), (0,3,0
2.3,3),(3,2,3),
0,3,3),(3,0,3

):(2,3,2)

)

Define G, : X x X x X — R™ by

(

ifx=y=2z2%#2,
ifx=y=2=2,
if (z,y,2) € A,
if (z,y,z2) € B,

Gp($7 y? Z) =

Wnlor N O =

It is easy to see that (X, G)p) is an asymmetric G,-metric space.

Recently, Ansari et al. [2] introduced a new G-1-¢- f-proximal contractive type map-
pings in G-metric spaces. Motivated and inspired by the research we prove certain best
proximity point theorems for proximal contractive pair of mappings.
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First, we recollect some necessary definitions and fundamental results produced on
Gp-metric spaces that we will need in this work.

Proposition 1.4 [30] Every Gp)-metric space (X, G),) defines a metric space (X, dg, ),
where de(x7y) = Gp(l‘a Y, y) + Gp(y7$7$) - Gp(l‘,l’,iﬁ) - Gp(y7y7y) for all T,y € X.

Proposition 1.5 [30] Let (X, G)) be a G,-metric space. Then for any z,y,z and a € X,
it follows that

(i) Gp(z,y,2) < Gp(z,z,y) + Gp(z, z,2) — Gp(x, x, x);

(ii) Gp(x,y,y) < 2Gp(z,2,y) — Gp(, 2, 7);

(it1) Gp(z,y,2) < Gp(x a a) + Gp(y,a,a) + Gp(z,a,a) — 2Gp(a, a,a);

(iv) G (xy,)<G(xaz)+G(ay,) Gp(aaa)

Definition 1.6 [21] Let T: X — X be a map and o : X X X — R be a function. Then
T is said to be a-orbital admissible if a(z, Tx) > 1 implies a(Tz, T?x) > 1.

Definition 1.7 [21] Let T': X — X be amap and o : X x X — R be a function. Then T’
is said to be triangular a-orbital admissible if 7" is a-orbital admissible, and a(x,y) > 1
and a(y,Ty) > 1 imply a(x,Ty) > 1.

Definition 1.8 [9] A function ¢ : [0,00) — [0, 00) is called upper semi-continuous from
the right if for each ¢ > 0 and each sequence {t, }nen such that ¢, > ¢ and lim ¢, = ¢,
n—oo

then equality holds limsup ¢(t,) < ¢(t).
n—o0

Definition 1.9 [9] Let (X, G)p) be a Gp-metric space and {z,,} be a sequence of points
of X. A point x € X is said to be the limit of sequence {z,} if

1113 Gp(z, m, xn) = Gp(x, x, x).

Definition 1.10 [9] Let (X,G,) be a Gp-metric space. A sequence {x,} is called a
Gp-Cauchy if and only if limy,, , y—00 Gp(Zp, Tm, ) exists and finite.

Definition 1.11 [9] A G,-metric space (X, G)p) is said to be Gp-complete if and only if
every Gp-Cauchy sequence in X is G-convergent to x € X such that

mrlzlrIgooG (Tn, T,y ) = Gp(z, z, ).

Definition 1.12 [3] Let (X, G)) be a complete G,-metric space, a : X x X — R be a
function and let T': X — X be a map. We say that the sequence {z,} is a-regular, if
the following condition is satisfied:

If {z,,} is a sequence in X such that a(zy,z,11) = 1, for all n and z,, — = as n — oo,
then there exists a subsequence {x,, } of {x,} such that a(z,,,z) > 1 for all k.

Definition 1.13 [13] Let 7: A — B be a map and a : X x X — [0,00) be a function.
The mapping T is said to be a-proximal admissible if

a(r,y) > 1
du,Tz) =d(A,B) } = a(u,v) >1
d(v,Ty) = d(A, B)

for all z,y,u,v € A.
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Lemma 1.14 [21] Let T : X — X be a triangular a-orbital admissible mapping. Assume
that there exists x; € X such that a(x1,Tz1) > 1. Define a sequence {z,} by z,4+1 =
Tz,. Then we have a(xy, xy,) = 1 for all m,n € N with n < m.

Remark 1 ([26]) Let (X,d) be a metric space. Then for given nonempty subsets A and
B, we define Ay and By as follows:
d(A,B) =inf{d(z,y) :x € A and y € B},
Aoy={z € A:d(z,y) =d(A,B) for some y € B},
By={y € B:d(z,y) =d(A,B) for some =€ A}.
If AN B # ¢, then Ag and By are nonempty. It is also interesting to note that if A

and B are closed subsets of normed linear space such that d(A4, B) > 0 then Ay and By
are contained in the boundaries of A and B respectively.

2. Main results

Before proving our main result, firstly we introduce the following definition of G-¢-
proximal contraction.

Definition 2.1 Let A and B be two nonempty subsets of a G,-metric space (X, G))
and T': A — B be a non-self mapping. We say that T' is a G-¢-proximal contraction
mapping if for z,y,u,v € A

de(’LL, T$) = dG;D(A’ B)
dap(u*, Tu) = dap(A, B) » = Gp(u,u”,v) < ¢(Gp(z, u,y)), (1)
dap(v, Ty) = dgp(A, B)

where ¢ : [0,00) — [0,00) is an upper semicontinuous function from the right such that
¢(t) <t for all t >0 and ¢(t) = 0 if and only if ¢ = 0.

Theorem 2.2 Let A and B be two non-empty subsets of Gp-metric space (X, Gp) such
that (A,G,) is complete Gp-metric space, Ay is non-empty and B is approximatively
compact with respect to A. Assume that 7" : A — B is G,-¢-proximal contraction
mapping such that T'(Ag) C By. Then T has a unique best proximity point.

Proof. Since the subset Ay is non-empty, we take xg € Ag. Taking Txy € T(Ag) C By
in account, we can find z; € Ag such that dgp(z1,Tz9) = dgp(A, B). Further since
Tz € T(Ao) C By, it follows that there is an element x5 € Ag such that dgp(z2, Tz1) =
dap(A, B). Repeatedly, we obtain a sequence {x,} in Ay satisfying

dap(tnt1, Ten) = dap(A, B)

for alln € NU{0}. In (1), set © = zp_1,u = Tp, ux = Tp11,y = Tpn, and v = x4 1. Then
we have Gp(zn, Tnt1, Tnt1) < A(Gp(Tn—1,Tn, Tn)). Hence,

Gp('rnaxn—i-hxn—l—l) < QS(Gp(mn—laa;nvxn)) < Gp(mn—lymnaxn)‘ (2)

So, the sequence {Gp (T, Tnt1, Tnt1)} is decreasing sequence in R and it is convergent
tot € RT. We claim that ¢t = 0. Suppose, to the contrary, that ¢ > 0. Taking limit as
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n — oo in (2), we have

n11—>rl<;loG (xmxn—&-laxn—i-l) d)(nll_}rgoG (xn—lvxmxn));

that is, ¢ < ¢(t) which is contradiction, since ¢(t) < t. Thus, t = 0 and

lim Gp(zpn, Tpi1, Tny1) = 0. (3)

n—oo

Next, we claim that the sequence {x,} is G,-Cauchy sequence. Suppose, to the contrary,
that there exists € < 0, and a sequence {z,, } of {z,} such that

Gp(Tm(k)s Trm(k)+15 Tn(k)) = € (4)

with n(k) > m(k) > k. Further, corresponding to m(k), we can choose n(k) in such a
way that it is the smallest integer satisfying (4). Hence,

Gp(Tim(k)ys Trm(k)+15 Tn(k)—1) < €

Now, we have

< Gp(Tm(k)s Tm(k)+1> Tn(k))
= Gp(Tn(k)s Tm(k)s Tm(k)+1)
< Gp(Tn(k)s Tn(k)—1 Tnk)—1) T Gp(Tn@k) =15 Tm(k)> Tmk)+1) = Gp(Tnk) =15 Tn(k)—1> Tn(k)—1)
< Gp(@n(k)s Tn(k)—15 Tnk)—1) T Gp(Tnk)—1> Tm(k)s Tm(k)+1)
< Gp(Tn(k)s Tr(k)—15 Tn(k)—1) + €. (5)

On the other hand,

Gp(Tn(k)ys Tn(k)—15 Tn(k)—1) = Gp(Tn(k)—1, Tn(k)— n(k))

N

Gp(%(k)_hl’n + Gp(Zn (k) Tr(k)—1> Tn(k))

Gp(Tr (k) Tr(k)—1> Tn(k))

(k)
— Gp(Tn(k)s Tn(k)s Tn(k))
< Gp(Tp(k)—1, Tn(k), k))

)+

= Gp(Tn(k)=1> Tn(k)> Tn(k)) T Gp(Tnk) =15 Tn(k)s Tn(k))
= 2Gp(Tn(k)—1> Tn(k)» xn(k))- (6)

By putting (6) in (5), we have
€ < Gp(Tm@k)s To(k)+1> Tn(k))

< Gp(xn(k% Ln(k)—1s :En(k)—l) +e
< 2Gp(Tp (k)15 Tn(k)s Tn(k)) T € (7)
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Taking limit £ — oo and using (3), we get
lim G,(x T x =e. 8
Jim (T (k)s Tm(k)+1> Tn(k)) (8)

Also,

Q

Gp(Tm(k)s Trm(k)+15 Tntk)) < Gp(Tmk)—1> Tmk)+1 Tnk) — Gp(Tmk) =15 Tm(k)—1> Tm(k)—1)

(
2(Tm(k)s Tm(k)—1> Tm(k)—1) T Gp(Tn(k)s Tmk) =15 Tm(k)+1)
(

NN
Q+QQ

p(Tm(k)s Tmk)—1> Tmk)—1) T Gp(Tn(k)s Tn(k)—1> Tn(k)—1)
Gp(Tn(k)—1> Tm(k)—1s Tmk)+1) — Gp(Tn(k)—1> Tn(k)—1> Tn(k)—1)
p(Tm(k)s Tm(k)—1> Tm(k)—1) T Gp(Tn(h)s Tn(k)—15 Tn(k)-1)

+ Gp(Tr(k)=1> Tm(k) =15 Tm(k)+1) (9)

and

Gp
Gp

Gp(:rn(k)—la Lm(k)—1 Tm(k) +1) ( Ln(k)s Tm(k)— m(k)+1) - Gp(xn(k)7$n(k)v xn(k))
(Tn(k)—1: Tn(k): Tnk)) + Gp(Tmk)—1: Tm(k) +1> Tn(k))

INCININ

Gp(Tp(k)—1,Tn k),%(k)) + Gp(Tim(k)—15 Trm(k)s Tm(k))
+ Gp( T (k) T (k) +15 Tn(k))- (10)

Taking limit k¥ — oo and applying (3), (6) and (8), we get

lim G,(x n(k)— 17$m(k)7laxm(k)+1) =€

k—o0

In the similar way, we can prove that
Jim G (@m k)1 T (k) Tn(ry-1) = €.

For equation (1) with & = Zp)—1,% = Tim(k), U% = Tk +1:Y = Tp(k)—15V = Tn(k), We
have

Gp(Tim(k)ys Tm(k)+15 Tn(k)) < A(Gp(Tmk)—1) Tm(k)s Tn(k)—1))-
Now, let kK — oo in above relation. Then € < ¢(€), which is contradiction. Thus,

lim Gp(@m, Tm+1, Tn) = 0;
mn—>00

that is, {x,} is a Cauchy sequence. Since (A, G)) is a complete Gp-metric space, there
exists z € A such that z,, = z as n — 0o. On the other hand, for all n € N, we can write

de(sz) Gp(zaTxn)

<d
< de(Za Tpy1) + de(l"nJrl, Tzy)
d

Gp(za ‘/L‘n-‘rl) + dGP(Av B)
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Taking the limits n — oo, we get le dap(z,Txy) = dgp(z, B) = dgp(A, B). Since B is

approximatively compact w.r.t. A. So the sequence {T'x,} has a subsequence {Tx )}
that converges to some y* € B. Hence,

dap(z,y*) = limy—soo dap(Tnky+1, TTnk)) = dap(A, B).

So, z € Ap. Since Tz € T(Ag) C By, there exists w € Ay such that dgy(w,Tz) =
dap(A, B). Consider (1) with u = @41, u* = Tpy0,v = w,z = 2,y = 2, we have

Gp(xn-i—ly Tn+2, w) < (Zs(Gp(l'n, Tn+1, Z))
Now, taking limit n — oo, we obtain
Gp(z,z,w) < 9(Gp(z,2,2)) < Gp(z,2,2) < Gp(z, z,w) Vz # w,

which is contradiction. Thus z = w. [ ]

Definition 2.3 Let A and B be two nonempty subsets of G-metric space (X, G,) and
a: X xX — [0,00) be a function. A mapping 7" : A — B is said to be G, —a — ¢
proximal contraction if, for all x,y,u,v € A,

d

o) Z e ) | = el G .0) <0Gl ).

de('U, Ty)

where ¢ : [0,00) — [0,00) is an upper semicontinuous function from the right such that
¢(t) <t for all t >0 and ¢(¢t) = 0 if and only if ¢ = 0.

Theorem 2.4 Let A and B be two nonempty subsets of Gj,-metric space (X, G)p) such
that (A, G)p) is complete Gp,-metric space and o : X x X — [0, 00) be a function. Also, let
T : A — B be a mapping and the pair (A, B) has P-property. Suppose that the following
conditions are satisfied:

(1) T is Gp-a-¢-proximal contraction;

(2) T is a-proximal admissible and T'(Ay) C Bo;

(3) if {x,,} is a sequence in A such that a(xy,,zp4+1) = 1 for all n and z, — = € A as
n — 00, then there exists a subsequence {z,,)} of {xy} such that a(z,),r) > 1
for all k;

(4) there exist zg,z1 € A such that dgp(z1,Txo) = d(A, B) and a(zg,z1) > 1.

Then there exists an elements z* € A such that dg,(2*, Tx*) = dgp(4, B).

Proof. Let z9,z1 be two elements in A such that dg,(x1,Tx9) = d(A,B) and
a(zg,r1) = 1. Thus, 21 € Ag. As T(Ag) C By, there exists zo3 € Ay such that
d(z9,Tx1) = d(A, B). Since T is a-proximal admissible, it follows «a(z1,z2) > 1,. Con-

tinuing in this way, we can construct a sequence {x, } in Ag such that dgy(2n, T2n—1) =
dap(A, B) and o2y, 2n—1) > 1 for all n € N. This implies that

de(ﬂj‘n, T:Enfl) = de(A, B),
dap(ns1, Txy) = dap(A, B).
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Using lemma 1.14, since T" is G-a-proximal contraction, we have

Gp(xnyl'n—l-l,xn—i-l) xn—lawn)Gp(wnymn—l-lamn—i-l)

< of

< ¢(Gp(xn71733n71’n))
< &(

<

which implies that Gp(xn,Znt1,Tny1) < Gp(Tn—1,2n,zn). Therefore, the sequence
{Gp(xn, 1, Tnt1)} is decreasing sequence in RT and it is convergent to ¢t € RT. We
claim that ¢ = 0. Suppose, on the contrary that ¢ > 0. Taking limit n — oo, we have
t < ¢(t), which is contradiction. Hence, t = 0; that is, lim, 00 Gp(Tn, Tnt1, Tnt1) = 0.
Now, we will show that {z,} is a G)-Cauchy sequence. Suppose, to the contrary, that
there exists € > 0 and a subsequence {x, } of {x,} such that

Gp(xmk7xnk7$nk) > € (11)

with ng > my > k. Further corresponding to my, we can choose ny in such a way that it
is the smallest integer and satisfying (11). Hence,

Gp(Tm(k) Tr(k)—1) Tn(k)—1) < €. (12)

On the other hand,

€ < Gp(xm(k)axn(k)v xn(k))
= Gp(Tim(k)> Tn(k)—15 Tnk)—1) T Gp(Tn)—1> Tnk)s Tnk) — Gp(Tnk)—1> Tn(k)—15 Tn(k)—1)

< Gp(Tm(k)s Tn(k)—1> Tnk)—1) T Gp(Tnk) =15 Tnk)> Tn(k))-

By taking limit, we have € < limy 00 Gp(Tm(k)> Tn(k), Tn(k)) < €, Which implies that
khﬁnolo Gp(l'm(k), Ln(k)s xn(k)) =€

Thus, {z,} is a Cauchy sequence. Since (A, G)p) is complete G p-metric space, there exists
z € A such that z,, — z as n — oco. On the other hand, for all n € N, we can write

dap(z, B) ap(2, Txy)

<d
g de(Z7 :L‘n+]_) + d(xn+17 Txn)
d

Gp(zvxn-i-l) +de(A’ B) (13)

Taking the limit from (13) as n — oo, we get

lim dgy(z, T2,) = dgp(2, B) = dgp(A, B).

n—oo

So z € Ayp. Since Tz € T'(Ag) C By, there exists w € Ag such that dg,(w,Tz) = d(A, B)
and dap(zn+1, Txn) = d(A, B). Consider

Gp(zpt1,w,w) < axy, 2)Gp(Tni1, w,w) < G(Gp(xn, 2,2)).
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Taking limit n — oo, we have
Gp(wa 2, Z) < d)(Gp(Z?ZaZ)) < GP(Z’Z’ Z) < Gp(Z,Z,’LU)

for w # z. This implies Gp(w, 2, 2) < Gp(z, z,w) for w # z, which is contradiction. Thus
z =w and dgp(w, Tw) = dgp(A, B). Hence T has a best proximity point. [ |

Definition 2.5 Let 7: X — X and n: X x X x X — [0,00). We say that T is n-orbital
admissible if for all z,y,2 € X, n(x, Ty, Ty) > 1 implies n(Tx, T?y, T?z) > 1.

Definition 2.6 Let 7 : X — X and n : X x X x X — [0,00) be two functions,
then T is said to be triangular n-orbital admissible if T is n-orbital admissible and
n(z,y,y) = 1,n(y,Ty,Ty) > 1 implies n(z, Ty, Ty) > 1.

Lemma 2.7 [21] Let T': X — X be a triangular n-orbital admissible mapping. Assume
that there exists x1 € X such that n(zy1,Tz1,Tx1) > 1. Define a sequence {z,} by
ZTpt1 = Txy. Then we have n(z,, Ty, Tm) = 1 for all m;n € N with n < m.

Proof. Since T is n-orbital admissible and n(x1, Tx1,Tx1) > 1; that is, n(z1, x2, x2) > 1
we deduce that n(Txy, Txe, Txs) = n(x2,z3,x3) = 1. By continuing this process, we get
N(Tny Tpt1,Tns1) = 1 for all n > 1. Suppose that n(zn, Tm,zm) = 1 and prove that
N(Tny T, Tmt1) = 1 where m > n. Since T is triangular n -orbital admissible and
N(Tm, Tmt1, Tmr1) = 1 we get that n(zy,, Tmi1, Tmr1) = 1. Hence we have proved that
N(Tn, Tm, Tm) = 1 for all n,m € N with m > n. [ ]

Definition 2.8 Let A and B be two nonempty subsets of a G, metric space (X,G)).
Let T: AUB — AU B be a non-self mapping such that T(A) C B,T(B) C A. T is said
to be G,-n-proximal cyclic weak contraction if for z,u,ux € A, v,y € B

de(U, TU*) - de(A7 B)
dap(ux, Tx) = dap(A, B) » = n(us,u,v)Gp(ux, u,v) < ¢(M(z,v,y)),  (14)
de(’U, Ty) = de(A7 B)

where M (z,v,y) = max{Gp(z,v,y), Gp(z, Tz, Tx),Gy(y, Ty, Ty)}.

Theorem 2.9 Let A and B be two nonempty subsets of a Gj,-metric space (X, G)),
(A,Gp) and (B,Gp) be complete Gp-metric spaces, Ay be nonempty set and By be
approximatively compact w.r.t. A. Assume that T: AUB — AU B is G}, — n-proximal
cyclic weak contraction such that T(A) ¢ B, T(B) C A and T(Ap) C By and T is
triangular n-proximal admissible mapping such that n(Tz1,Tx1,29) > 1. Then T has a
best proximity point.

Proof. If 29 € Ap, then z1 = Txg € T(Ao) C B. thus, dgp(zo, Txo) = dap(zo, 1) =
dap(A, B). Further since zp = Tz € T(By) C A, it follows that dgp(z1,Tz1) =
dap(x1,22) = dgp(A, B). Recursively, we obtain sequence {z,} in A U B satisfying
dap(Tpn, Tnt1) = dgp(A, B) for all n € N U{0}. In (14), set = zy—1,u = Tpy1, uk =
Tp+1,Y = Tpn and v = x,,. Then we get

n(anrla Tn+1, $n)Gp(xn+la Tn+1, mn) < QS(M(xnfla Tn, xn))a (15)
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where

M(:En,h Tn, -'En) = maX{Gp(-Tnfla Tn,y l’n), Gp(xnfla Txp-1, Tl'nfl)a Gp(xna Ty, T-'En)}
= maX{Gp(-Tnfla Ln, l'n)a Gp(xnfla Ln, l'n)a Gp(xna Tn+1, $n+1)}

= maX{Gp(xn—la Ln, xn)u Gp(xnu Tn+1, xn—i—l)}-

Let M(zp—1,%n,2n) = Gp(@n,Tni1,Tnt1). Then we have ¢(M(xp—1,2n,2,)) =
&(Gp(Tn, Tnt1,Tns1)). Hence,

Gp(xn7 Tn+1, xn—f—l) = Gp(xn—l—l; Tn+1, xn)

N

<N(Tng1, Tny, QUn)Gp(xn-&-lv Tpt1,Tn)
= N(ZTnt1, Tnil,s xn)Gp(xm Tptl, Tntl)
P(M (21, Tn, Tn))
9(

Gp(xna Tn41, :L'nJrl))-

N

So, Gp(xpn, Tpi1,Tny1) = 0; that is, z, = x,41 and each z, is fixed point, which is
contradiction. Hence, M (zp—1,%n,2n) = Gp(Tn—1,%n,2n) and Gp(Tn, Tni1, Tne1) <
A(Gp(n—1,Tn,zn)) < Gp(Tp-1,2n,x,), which implies that Gp(zp,Tpi1,Tny1) <
Gp(Tp—1,2n, ). Thus, the sequence {Gp(Zn, Tpt1,Tnt1)} is decreasing sequence in RY.
So, it is convergent to t € RT. We claim that ¢ = 0. Suppose on the contrary that ¢ > 0.
Taking limit n — oo, we have

nh—>ngo Gp(xn) Tn+1, xn—&—l) < nll_?;o d)(Gp(xn—h Tn, xn))

Thus, t < ¢(t), which is contradiction. Hence, t = 0.

li_>m Gp(zpn, Tpt1,Tnt1) = 0. (16)

Now, we will show that {z,} is an G,-Cauchy sequence. Suppose on the contrary that,
there exists € > 0 and a subsequence {z,;)} of {x,} such that

Gp(:zm(k)) xn(k)vxn(k)) =€ (17)

with n(k) > m(k) > k. Further, corresponding to value of m(k), we can choose n(k) in
such a way that it is the smallest integer satisfying inequality (17). Hence,

Gp(Tmky, Gp(T(n(k)—1)s Gp(Tnr)-1)) < €
By (16) and (17), we have
€< p(mm(k) s Ln(k)> xn(k))

G
Gp(Tm(k)s Tr(k)—15 Tn(k)—1) + Gp(Tnk)—1> Tn(k) Tnk)) = Gp(Tnk)—15 Tn(k)—1> Tn(k)—1)
G

N

P(xm(k) y n(k)—1, xn(k)—l) + GP(:En(k)—lv Ln(k)s xn(k))
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By taking limit, kli)ngo Gp(Tim(k)s Tn(k)> Tnk)) = € Now, let Gp(Zn(k)> Tn(k)+1> Tn(k)+1) < €
and Gp(Tp(k)> Tm(k)+15 Tm(k)+1) < € for all k > ko with a kg € N. Then, for all k > ko,

Gp(Tm(k)s Tk Tn(k)) = M (Tm(k)y Tn(k)s Tnk))-
. _ N .
So lim M (k) Tn(k) n(k)) = € and for all k &€ N, M (@ (r)s Tn(k) Tn(r)) = € (by (17))

Since ¢ is upper semi-continuous from the right, we deduce that

lim sup qS(M(IEm(k), $n(k)7xn(k))) < ¢(e).

k—>o00
Also,
< Gp(@m(k)s Tn(k) Tn(k))
= Gp(@n(k): Tnk)s Tm(k))
< Gp(Tnk)s Tm(k)s Tmk)) T Gp(Tmk)s Tnk)s Tmk)) — Gp(Tm(k)s Tm(k) Tm(k))
= Gp(Tm(k)y Tm(k) Tn(k)) T Gp(Tm(k)s Tn(k)s Tmk)) = Gp(Tmk)s Tm(k)s Tm(k))
< n(fﬂmwwm( 1) Za(k) Gp(Tm(k)> k) Tr(k)) + Gp(Tmk) Tn(k)s Tm(k))
—Gp(Trm(k)s T k) Tm(k))
< QM Tk Tnk)s Tnk))) + Gp(Tmk)> Tnk)s Tmk) = Gp(@Tm(k) Tmk)s Tm(k))
< (M (T (k) Tu(k)s Tnk))) T Gp(Tmk)s Tnk)s o)) + Gp(Tnk)> Tnk)> Tm(k))
—Gp(Tnk)s Tn(k)s Tnk) = Gp(Tm(k)s Tmk)s Tm(k))-

Taking limit & — oo, then € < ¢(€) < e. Consequently limy, 00 Gp(Tm, Tn, Tn) = 0 and
{z,} is a Cauchy sequence in G,-complete Gp-metric space (X, Gp). Since A and B are
complete, there exists z € A C AU B such that z,, — z as n — oo. On the other hand,

dep(2, B) < dap(z, Tn)
= de(z,an)
< dap(2, 2n) + dap(n, Tny1)
<dap(z,xn) + dap(zn, Tnt1)
< dgp(2,2n) + dap(A, B)
< dep(z,2n) + dap(z, B)

for each n € N. Taking limit n — oo in above inequality, we get

dap(z,B) < ILm dap(z,Txy)
= de(Z, B)
= dgp(A, B).

Since B is approximatively compact w.r.t. A, so the sequence {T'z,} has a subsequence
{T'zy,1)} that converges to some y* € B C AU B. Hence,

dap(z, y*) = limy, 00 dGp(Tn k), TTnk)) = dap(A, B).



166 S. Rathee and K. Dhingra / J. Linear. Topological. Algebra. 07(03) (2018) 155-168.

So, z € Ap. Now, since Tz € T'(Ag) C By, there exists w € Ay such that dg,(w,Tz) =
dcp(A, B). From given condition (14) with z = z,,—1, v = w, ux = 2z, y = x, and v = xp,
we get

Gp(szvxn) < n(z,w,xn)Gp(z, w, Tp) < G(M(Tn—1,Tn,70)), (18)
where

M(l'n—la T, xn) = maX{Gp(xn—l)u T, xn)u Gp(l‘n—la Trp-1, Tﬂ:n—l)a Gp(l'na Ty, Tfl:n)}

= maX{Gp(xn—lv Tn, xn)v Gp(xna Tn+1, xn-l—l)}-

Using (18), we have
Gp(Z, w, -Tn) < 77(27 w, xn)Gp(Za w, $n) < QS(maX{Gp(xnfla Tn, l‘n), Gp(xna Tn+1, xn+1)})-

Taking limit n — oo, we get G, (z, w, z) < ¢(0) = 0 and so, Gp(z, 2z, w) = 0. This implies
z = w. Thus, dgp(2,T2) = dgp(A, B) and T has a best proximity point. [ |

If we consider the above theorem with n(ux,u,v) = 1 and ¢(¢t) = ¢, then we get the
following corollary.

Corollary 2.10 Let A, B be two non-empty subsets of a G-metric space (X, G,) such
that (A4, G,), (B, G,) are complete Gp-metric spaces, Ay is non-empty and By is approx-
imatively compact w.r.t. A. Assume that T': AUB — AU B such that

de(ua TU*) = de(Aa B)
de(u*,Tu) = de(Aa B) = Gp(u*7u7 U) < M(.’E,U,y),
A B

dap(v, Ty) = dap(A, B)
where M(CE,’U,y) = maX{Gp(x?U7y)’Gp(vavax)7Gp(vavay)}a T(A) - B7 T(B) -
A and T'(Ap) C Bp. Then T has a best proximity point.
Exzample 2.11 Let X ={0,1,2,3} and

A ={(1,0,0),(0,1,0), (0,0,1), (2,0,0), (0,2,0), (0,0, 2), (3,0,0), (0,3,0), (0,0, 3),
(1,2,2),(2,1,2),(2,2,1),(1,3,3,),(3,1,3),(3,3,1), (2,3,3), (3,2,3), (3,3,2)},
B ={(0,1,1),(1,0,1),(1,1,0), (0,2,2), (2,0,2), (2,2,0), (0,3,3), (3,0, 3), (3,3,0),
(2,1,1),(1,2,1),(1,1,2),(3,1,1), (1,3,1), (1,1,3), (3,2,2), (2,3,2), (2,2,3)}.

Define G : X x X x X — R" by

1, fr=y=2+#2,
0, ifer=y=2=2,
Gp(z,y,2) = ¢ 2, if (z,y,2) € A,
3 if (z,y,2) € B,
3 T FYyFzF# .

\

Define the mappings T: AUB — AU B for A ={0,2} and B = {1,3} by
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if v = 1 if AUB
T(x):{o fr=3 and  n(z,y, ) = freAU

r+1 otherwise 0 otherwise
Also, consider ¢ : [0,00) — [0,00) by ¢(t) = 5. Clearly dgy(A,B) = 1, T(A) C B,
T(B) C A and T is a Gp-n-cyclic weak contraction for u = u* = 2,2 = 0 € A and
v =1,y =3 € B. Thus, we have

Gp(u™,u,v) = Gp(2,2,1) =2

and
M(z,v,y) = max{Gp(z,v,y), Gp(x, Tz, Tx), Gp(y, Ty, Ty)}
=max{G,(0,1,3),G,(0,1,1),G,(3,1,1)}
55

- max{3, ia 5}
Hence,

n(u”, u, v)Gp(u*,u, y) < d(M(z,v,y)).
Thus,

dap(u, Tu*) = dgp(A, B
dap(u*, Tu) = dgp(A, B) p = n(u*,u,v)Gp(u*, u,v) < M(z,v,y).
dap(v,Ty) = dgp(A, B

Hence, T' is G))-n-cyclic weak contraction mapping. All conditions of above theorem holds
and T has a best proximity point. Here, z = 0 is best proximity point of 7.

As an application to our best proximity point results we here derive fixed point theorem
as in the form of the following. As in definition, we have

dap(u, Tu*) = dgp(A, B)
dap(u*, Tu) = dgyp(A, B) p = n(u*,u,v)Gy(u*, u,v) < (M (z,v,y)).  (19)
dap(v,Ty) = dgyp(A, B)

If we consider A = B = X, then

u="Tu*
uk =Tz p = u=T?(x).
v="Ty

Then condition (19) becomes n(Txz, T?z, Ty)Gy(Tx, T?x, Ty) < ¢(M(x,Ty,y)). Now, we
have the following fixed point theorem.

Theorem 2.12 Let (X,G,) be a complete Gp-metric space and T' : X — X be a
mapping satisfying the following condition

n(Txa szv Ty)Gp(T‘r’ T21:7 Ty) < QS(M(J"’ Tya y))
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for all z,y € X and ¢ € . Then T has a fixed point.
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