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Existence of best proximity and fixed points in Gp-metric spaces
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Abstract. In this paper, we establish some best proximity point theorems using new proximal
contractive mappings in asymmetric Gp-metric spaces. Our motive is to find an optimal
approximate solution of a fixed point equation. We provide best proximity points for cyclic
contractive mappings in Gp-metric spaces. As consequences of these results, we deduce fixed
point results in Gp-metric spaces. We also provide examples to analyze and support our
results.
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1. Introduction

Fixed point theory mainly concerns with the fixed point equation Tx = x, where
T : A → B is some nonlinear operator. The solution of this equation is known as fixed
point of the operator T . But it is not necessary that the equation has a solution. In
that case when T has no fixed point, best approximation results provide an approximate
solution to the fixed point equation Tx = x. Best proximity point results provide optimal
approximate solution of the fixed point equation, in this case we may find an element
x ∈ A which is closest to Tx; that is, the distance between Tx and x is least as compare
to other elements of A. Such a point is called the best proximity point of T . Many
researchers have directed their attention to this field and proved best proximity point
theorems in various settings (see [5, 6, 20, 24, 25, 28]).
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On the other hand, Zand and Nezhad [30] introduced the notion of Gp-metric spaces
which are a combination of the notions of partial metric spaces and G-metric spaces
(also, see [1]).

Definition 1.1 [30] Let X be a nonempty set. A function Gp : X ×X ×X → [0,∞) is
called a Gp-metric if the following conditions are satisfied:

(GP1) x = y = z if Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x);
(GP2) 0 ⩽ Gp(x, x, x) ⩽ Gp(x, x, y) ⩽ Gp(x, y, z) for all x, y, z ∈ X;
(GP3) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = ..., symmetry in all three variables;
(GP4) Gp(x, y, z) ⩽ Gp(x, a, a) +Gp(a, y, z)−Gp(a, a, a) for any x, y, z, a ∈ X.

Then the pair (X,Gp) is called a Gp-metric space.

A number of authors have published many fixed point results on the setting of general-
ized metric spaces (see [4–30]). By inspiring this research many authors proved fixed and
best proximity point results in Gp-metric spaces. With the (GP2) condition it is easy to
see that Gp(x, x, y) = Gp(x, y, y) holds for all x, y ∈ X, this implies the space is symmet-
ric. But then the claim in [30] that each G-metric space is also Gp-metric space is false,
since it is well known that the condition of symmetry might not hold in G-metric space.
Then to overcome this problem Parvaneh et al. [19] replaced (GP2) by the condition
following

0 ⩽ Gp(x, x, x) ⩽ Gp(x, x, y) ⩽ Gp(x, y, z) ∀x, y, z ∈ X with y ̸= z.

This definition implies that in each case G-metric space is Gp-metric space, but a Gp-
metric space might be asymmetric.

Example 1.2 [30] Let X = [0,∞) and Gp(x, y, z) = max{|x− y| , |y − z| , |z − x|} for
all x, y, z ∈ X. Then (X,Gp) is a symmetric Gp-metric space.

Example 1.3 [19] Let X = {0, 1, 2, 3} and

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2), (3, 0, 0), (0, 3, 0), (0, 0, 3),

(1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 3, 3, ), (3, 1, 3), (3, 3, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)},

B = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (0, 3, 3), (3, 0, 3), (3, 3, 0),

(2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (1, 3, 1), (1, 1, 3), (3, 2, 2), (2, 3, 2), (2, 2, 3)}

Define Gp : X ×X ×X → R+ by

Gp(x, y, z) =



1, if x = y = z ̸= 2,

0, if x = y = z = 2,

2, if (x, y, z) ∈ A,
5
2 if (x, y, z) ∈ B,

3 x ̸= y ̸= z ̸= x.

It is easy to see that (X,Gp) is an asymmetric Gp-metric space.

Recently, Ansari et al. [2] introduced a new G-ψ-ϕ-f -proximal contractive type map-
pings in G-metric spaces. Motivated and inspired by the research we prove certain best
proximity point theorems for proximal contractive pair of mappings.
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First, we recollect some necessary definitions and fundamental results produced on
Gp-metric spaces that we will need in this work.

Proposition 1.4 [30] Every Gp-metric space (X,Gp) defines a metric space (X, dGp
),

where dGp
(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y) for all x, y ∈ X.

Proposition 1.5 [30] Let (X,Gp) be a Gp-metric space. Then for any x, y, z and a ∈ X,
it follows that

(i) Gp(x, y, z) ⩽ Gp(x, x, y) +Gp(x, x, z)−Gp(x, x, x);
(ii) Gp(x, y, y) ⩽ 2Gp(x, x, y)−Gp(x, x, x);
(iii) Gp(x, y, z) ⩽ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a)− 2Gp(a, a, a);
(iv) Gp(x, y, z) ⩽ Gp(x, a, z) +Gp(a, y, z)−Gp(a, a, a).

Definition 1.6 [21] Let T : X → X be a map and α : X ×X → R be a function. Then
T is said to be α-orbital admissible if α(x, Tx) ⩾ 1 implies α(Tx, T 2x) ⩾ 1.

Definition 1.7 [21] Let T : X → X be a map and α : X×X → R be a function. Then T
is said to be triangular α-orbital admissible if T is α-orbital admissible, and α(x, y) ⩾ 1
and α(y, Ty) ⩾ 1 imply α(x, Ty) ⩾ 1.

Definition 1.8 [9] A function ϕ : [0,∞) → [0,∞) is called upper semi-continuous from
the right if for each t ⩾ 0 and each sequence {tn}n∈N such that tn ⩾ t and lim

n→∞
tn = t,

then equality holds lim sup
n→∞

ϕ(tn) ⩽ ϕ(t).

Definition 1.9 [9] Let (X,Gp) be a Gp-metric space and {xn} be a sequence of points
of X. A point x ∈ X is said to be the limit of sequence {xn} if

lim
m,n→∞

Gp(x, xm, xn) = Gp(x, x, x).

Definition 1.10 [9] Let (X,Gp) be a Gp-metric space. A sequence {xn} is called a
Gp-Cauchy if and only if limm,n,r→∞Gp(xn, xm, xr) exists and finite.

Definition 1.11 [9] A Gp-metric space (X,Gp) is said to be Gp-complete if and only if
every Gp-Cauchy sequence in X is Gp-convergent to x ∈ X such that

lim
m,n,r→∞

Gp(xn, xm, xr) = Gp(x, x, x).

Definition 1.12 [3] Let (X,Gp) be a complete Gp-metric space, α : X ×X → R be a
function and let T : X → X be a map. We say that the sequence {xn} is α-regular, if
the following condition is satisfied:
If {xn} is a sequence in X such that α(xn, xn+1) ⩾ 1, for all n and xn → x as n → ∞,
then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ⩾ 1 for all k.

Definition 1.13 [13] Let T : A → B be a map and α : X ×X → [0,∞) be a function.
The mapping T is said to be α-proximal admissible if

α(x, y) ⩾ 1
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ α(u, v) ⩾ 1

for all x, y, u, v ∈ A.
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Lemma 1.14 [21] Let T : X → X be a triangular α-orbital admissible mapping. Assume
that there exists x1 ∈ X such that α(x1, Tx1) ⩾ 1. Define a sequence {xn} by xn+1 =
Txn. Then we have α(xn, xm) ⩾ 1 for all m,n ∈ N with n < m.

Remark 1 ([26]) Let (X, d) be a metric space. Then for given nonempty subsets A and
B, we define A0 and B0 as follows:

d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

If A ∩ B ̸= ϕ, then A0 and B0 are nonempty. It is also interesting to note that if A
and B are closed subsets of normed linear space such that d(A,B) ≻ 0 then A0 and B0

are contained in the boundaries of A and B respectively.

2. Main results

Before proving our main result, firstly we introduce the following definition of Gp-ϕ-
proximal contraction.

Definition 2.1 Let A and B be two nonempty subsets of a Gp-metric space (X,Gp)
and T : A → B be a non-self mapping. We say that T is a Gp-ϕ-proximal contraction
mapping if for x, y, u, v ∈ A

dGp(u, Tx) = dGp(A,B)
dGp(u

∗, Tu) = dGp(A,B)
dGp(v, Ty) = dGp(A,B)

 =⇒ Gp(u, u
∗, v) ⩽ ϕ(Gp(x, u, y)), (1)

where ϕ : [0,∞) → [0,∞) is an upper semicontinuous function from the right such that
ϕ(t) < t for all t > 0 and ϕ(t) = 0 if and only if t = 0.

Theorem 2.2 Let A and B be two non-empty subsets of Gp-metric space (X,Gp) such
that (A,Gp) is complete Gp-metric space, A0 is non-empty and B is approximatively
compact with respect to A. Assume that T : A → B is Gp-ϕ-proximal contraction
mapping such that T (A0) ⊆ B0. Then T has a unique best proximity point.

Proof. Since the subset A0 is non-empty, we take x0 ∈ A0. Taking Tx0 ∈ T (A0) ⊆ B0

in account, we can find x1 ∈ A0 such that dGp(x1, Tx0) = dGp(A,B). Further since
Tx1 ∈ T (A0) ⊆ B0, it follows that there is an element x2 ∈ A0 such that dGp(x2, Tx1) =
dGp(A,B). Repeatedly, we obtain a sequence {xn} in A0 satisfying

dGp(xn+1, Txn) = dGp(A,B)

for all n ∈ N ∪ {0}. In (1), set x = xn−1, u = xn, u∗ = xn+1, y = xn and v = xn+1. Then
we have Gp(xn, xn+1, xn+1) ⩽ ϕ(Gp(xn−1, xn, xn)). Hence,

Gp(xn, xn+1, xn+1) ⩽ ϕ(Gp(xn−1, xn, xn)) < Gp(xn−1, xn, xn). (2)

So, the sequence {Gp(xn, xn+1, xn+1)} is decreasing sequence in R+ and it is convergent
to t ∈ R+. We claim that t = 0. Suppose, to the contrary, that t > 0. Taking limit as
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n→ ∞ in (2), we have

lim
n→∞

Gp(xn, xn+1, xn+1) ⩽ ϕ( lim
n→∞

Gp(xn−1, xn, xn));

that is, t ⩽ ϕ(t) which is contradiction, since ϕ(t) < t. Thus, t = 0 and

lim
n→∞

Gp(xn, xn+1, xn+1) = 0. (3)

Next, we claim that the sequence {xn} is Gp-Cauchy sequence. Suppose, to the contrary,
that there exists ϵ < 0, and a sequence {xnk

} of {xn} such that

Gp(xm(k), xm(k)+1, xn(k)) ⩾ ϵ (4)

with n(k) ⩾ m(k) > k. Further, corresponding to m(k), we can choose n(k) in such a
way that it is the smallest integer satisfying (4). Hence,

Gp(xm(k), xm(k)+1, xn(k)−1) < ϵ.

Now, we have

ϵ ⩽ Gp(xm(k), xm(k)+1, xn(k))

= Gp(xn(k), xm(k), xm(k)+1)

⩽ Gp(xn(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xm(k), xm(k)+1)−Gp(xn(k)−1, xn(k)−1, xn(k)−1)

⩽ Gp(xn(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xm(k), xm(k)+1)

< Gp(xn(k), xn(k)−1, xn(k)−1) + ϵ. (5)

On the other hand,

Gp(xn(k), xn(k)−1, xn(k)−1) = Gp(xn(k)−1, xn(k)−1, xn(k))

⩽ Gp(xn(k)−1, xn(k), xn(k)) +Gp(xn(k), xn(k)−1, xn(k))

−Gp(xn(k), xn(k), xn(k))

< Gp(xn(k)−1, xn(k), xn(k)) +Gp(xn(k), xn(k)−1, xn(k))

= Gp(xn(k)−1, xn(k), xn(k)) +Gp(xn(k)−1, xn(k), xn(k))

= 2Gp(xn(k)−1, xn(k), xn(k)). (6)

By putting (6) in (5), we have

ϵ ⩽ Gp(xm(k), xm(k)+1, xn(k))

< Gp(xn(k), xn(k)−1, xn(k)−1) + ϵ

< 2Gp(xn(k)−1, xn(k), xn(k)) + ϵ. (7)
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Taking limit k → ∞ and using (3), we get

lim
k→∞

Gp(xm(k), xm(k)+1, xn(k)) = ϵ. (8)

Also,

Gp(xm(k), xm(k)+1, xn(k)) ⩽ Gp(xm(k)−1, xm(k)+1, xn(k))−Gp(xm(k)−1, xm(k)−1, xm(k)−1)

⩽ Gp(xm(k), xm(k)−1, xm(k)−1) +Gp(xn(k), xm(k)−1, xm(k)+1)

⩽ Gp(xm(k), xm(k)−1, xm(k)−1) +Gp(xn(k), xn(k)−1, xn(k)−1)

+Gp(xn(k)−1, xm(k)−1, xm(k)+1)−Gp(xn(k)−1, xn(k)−1, xn(k)−1)

⩽ Gp(xm(k), xm(k)−1, xm(k)−1) +Gp(xn(k), xn(k)−1, xn(k)−1)

+Gp(xn(k)−1, xm(k)−1, xm(k)+1) (9)

and

Gp(xn(k)−1, xm(k)−1, xm(k)+1) ⩽ Gp(xn(k), xm(k)−1, xm(k)+1)−Gp(xn(k), xn(k), xn(k))

⩽ Gp(xn(k)−1, xn(k), xn(k)) +Gp(xm(k)−1, xm(k)+1, xn(k))

⩽ Gp(xn(k)−1, xn(k), xn(k)) +Gp(xm(k)−1, xm(k), xm(k))

+Gp(xm(k), xm(k)+1, xn(k)). (10)

Taking limit k → ∞ and applying (3), (6) and (8), we get

lim
k→∞

Gp(xn(k)−1, xm(k)−1, xm(k)+1) = ϵ.

In the similar way, we can prove that

lim
k→∞

Gp(xm(k)−1, xm(k), xn(k)−1) = ϵ.

For equation (1) with x = xn(k)−1, u = xm(k), u∗ = xm(k)+1, y = xn(k)−1, v = xn(k), we
have

Gp(xm(k), xm(k)+1, xn(k)) ⩽ ϕ(Gp(xm(k)−1, xm(k), xn(k)−1)).

Now, let k → ∞ in above relation. Then ϵ ⩽ ϕ(ϵ), which is contradiction. Thus,

lim
m,n→∞

Gp(xm, xm+1, xn) = 0;

that is, {xn} is a Cauchy sequence. Since (A,Gp) is a complete Gp-metric space, there
exists z ∈ A such that xn → z as n→ ∞. On the other hand, for all n ∈ N , we can write

dGp(z,B) ⩽ dGp(z, Txn)

⩽ dGp(z, xn+1) + dGp(xn+1, Txn)

= dGp(z, xn+1) + dGp(A,B).
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Taking the limits n → ∞, we get lim
n→∞

dGp(z, Txn) = dGp(z,B) = dGp(A,B). Since B is

approximatively compact w.r.t. A. So the sequence {Txn} has a subsequence {Txn(k)}
that converges to some y∗ ∈ B. Hence,

dGp(z, y
∗) = limn→∞ dGp(xn(k)+1, Txn(k)) = dGp(A,B).

So, z ∈ A0. Since Tz ∈ T (A0) ⊆ B0, there exists w ∈ A0 such that dGp(w, Tz) =
dGp(A,B). Consider (1) with u = xn+1, u∗ = xn+2, v = w, x = z, y = z, we have

Gp(xn+1, xn+2, w) ⩽ ϕ(Gp(xn, xn+1, z)).

Now, taking limit n→ ∞, we obtain

Gp(z, z, w) ⩽ ϕ(Gp(z, z, z)) < Gp(z, z, z) < Gp(z, z, w) ∀z ̸= w,

which is contradiction. Thus z = w. ■

Definition 2.3 Let A and B be two nonempty subsets of Gp-metric space (X,Gp) and
α : X × X → [0,∞) be a function. A mapping T : A → B is said to be Gp − α − ϕ
proximal contraction if, for all x, y, u, v ∈ A,

dGp(u, Tx) = dGp(A,B)
dGp(v, Ty) = dGp(A,B)

}
=⇒ α(x, y)Gp(u, v, v) ⩽ ϕ(Gp(x, y, y)),

where ϕ : [0,∞) → [0,∞) is an upper semicontinuous function from the right such that
ϕ(t) < t for all t > 0 and ϕ(t) = 0 if and only if t = 0.

Theorem 2.4 Let A and B be two nonempty subsets of Gp-metric space (X,Gp) such
that (A,Gp) is complete Gp-metric space and α : X×X → [0,∞) be a function. Also, let
T : A→ B be a mapping and the pair (A,B) has P-property. Suppose that the following
conditions are satisfied:

(1) T is Gp-α-ϕ-proximal contraction;
(2) T is α-proximal admissible and T (A0) ⊆ B0;
(3) if {xn} is a sequence in A such that α(xn, xn+1) ⩾ 1 for all n and xn → x ∈ A as

n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ⩾ 1
for all k;

(4) there exist x0, x1 ∈ A such that dGp(x1, Tx0) = d(A,B) and α(x0, x1) ⩾ 1.

Then there exists an elements x∗ ∈ A such that dGp(x
∗, Tx∗) = dGp(A,B).

Proof. Let x0, x1 be two elements in A such that dGp(x1, Tx0) = d(A,B) and
α(x0, x1) ⩾ 1. Thus, x1 ∈ A0. As T (A0) ⊆ B0, there exists x2 ∈ A0 such that
d(x2, Tx1) = d(A,B). Since T is α-proximal admissible, it follows α(x1, x2) ⩾ 1,. Con-
tinuing in this way, we can construct a sequence {xn} in A0 such that dGp(xn, Txn−1) =
dGp(A,B) and α(xn, xn−1) ⩾ 1 for all n ∈ N . This implies that

dGp(xn, Txn−1) = dGp(A,B),

dGp(xn+1, Txn) = dGp(A,B).
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Using lemma 1.14, since T is Gp-α-proximal contraction, we have

Gp(xn, xn+1, xn+1) ⩽ α(xn−1, xn)Gp(xn, xn+1, xn+1)

⩽ ϕ(Gp(xn−1, xn, xn))

⩽ ϕ(Gp(xn−1, xn, xn))

< Gp(xn−1, xn, xn),

which implies that Gp(xn, xn+1, xn+1) < Gp(xn−1, xn, xn). Therefore, the sequence
{Gp(xn, xn+1, xn+1)} is decreasing sequence in R+ and it is convergent to t ∈ R+. We
claim that t = 0. Suppose, on the contrary that t > 0. Taking limit n → ∞, we have
t ⩽ ϕ(t), which is contradiction. Hence, t = 0; that is, limn→∞Gp(xn, xn+1, xn+1) = 0.
Now, we will show that {xn} is a Gp-Cauchy sequence. Suppose, to the contrary, that
there exists ϵ > 0 and a subsequence {xnk

} of {xn} such that

Gp(xmk
, xnk

, xnk
) ⩾ ϵ (11)

with nk ⩾ mk > k. Further corresponding to mk, we can choose nk in such a way that it
is the smallest integer and satisfying (11). Hence,

Gp(xm(k), xn(k)−1, xn(k)−1) < ϵ. (12)

On the other hand,

ϵ ⩽ Gp(xm(k), xn(k), xn(k))

= Gp(xm(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xn(k), xn(k))−Gp(xn(k)−1, xn(k)−1, xn(k)−1)

⩽ Gp(xm(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xn(k), xn(k)).

By taking limit, we have ϵ ⩽ limk→∞Gp(xm(k), xn(k), xn(k)) ⩽ ϵ, which implies that

lim
k→∞

Gp(xm(k), xn(k), xn(k)) = ϵ.

Thus, {xn} is a Cauchy sequence. Since (A,Gp) is complete GP -metric space, there exists
z ∈ A such that xn → z as n→ ∞. On the other hand, for all n ∈ N , we can write

dGp(z,B) ⩽ dGp(z, Txn)

⩽ dGp(z, xn+1) + d(xn+1, Txn)

= dGp(z, xn+1) + dGp(A,B). (13)

Taking the limit from (13) as n→ ∞, we get

lim
n→∞

dGp(z, Txn) = dGp(z,B) = dGp(A,B).

So z ∈ A0. Since Tz ∈ T (A0) ⊆ B0, there exists w ∈ A0 such that dGp(w, Tz) = d(A,B)
and dGp(xn+1, Txn) = d(A,B). Consider

Gp(xn+1, w, w) ⩽ α(xn, z)Gp(xn+1, w, w) ⩽ ϕ(Gp(xn, z, z)).
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Taking limit n→ ∞, we have

Gp(w, z, z) ⩽ ϕ(Gp(z, z, z)) < Gp(z, z, z) ⩽ Gp(z, z, w)

for w ̸= z. This implies Gp(w, z, z) < Gp(z, z, w) for w ̸= z, which is contradiction. Thus
z = w and dGp(w, Tw) = dGp(A,B). Hence T has a best proximity point. ■

Definition 2.5 Let T : X → X and η : X×X×X → [0,∞). We say that T is η-orbital
admissible if for all x, y, z ∈ X, η(x, Ty, Ty) ⩾ 1 implies η(Tx, T 2y, T 2z) ⩾ 1.

Definition 2.6 Let T : X → X and η : X × X × X → [0,∞) be two functions,
then T is said to be triangular η-orbital admissible if T is η-orbital admissible and
η(x, y, y) ⩾ 1, η(y, Ty, Ty) ⩾ 1 implies η(x, Ty, Ty) ⩾ 1.

Lemma 2.7 [21] Let T : X → X be a triangular η-orbital admissible mapping. Assume
that there exists x1 ∈ X such that η(x1, Tx1, Tx1) ⩾ 1. Define a sequence {xn} by
xn+1 = Txn. Then we have η(xn, xm, xm) ⩾ 1 for all m,n ∈ N with n < m.

Proof. Since T is η-orbital admissible and η(x1, Tx1, Tx1) ⩾ 1; that is, η(x1, x2, x2) ⩾ 1
we deduce that η(Tx1, Tx2, Tx2) = η(x2, x3, x3) ⩾ 1. By continuing this process, we get
η(xn, xn+1, xn+1) ⩾ 1 for all n ⩾ 1. Suppose that η(xn, xm, xm) ⩾ 1 and prove that
η(xn, xm+1, xm+1) ⩾ 1 where m > n. Since T is triangular η -orbital admissible and
η(xm, xm+1, xm+1) ⩾ 1 we get that η(xn, xm+1, xm+1) ⩾ 1. Hence we have proved that
η(xn, xm, xm) ⩾ 1 for all n,m ∈ N with m > n. ■

Definition 2.8 Let A and B be two nonempty subsets of a Gp metric space (X,Gp).
Let T : A∪B → A∪B be a non-self mapping such that T (A) ⊂ B, T (B) ⊂ A. T is said
to be Gp-η-proximal cyclic weak contraction if for x, u, u∗ ∈ A, v, y ∈ B

dGp(u, Tu∗) = dGp(A,B)
dGp(u∗, Tx) = dGp(A,B)
dGp(v, Ty) = dGp(A,B)

 =⇒ η(u∗, u, v)Gp(u∗, u, v) ⩽ ϕ(M(x, v, y)), (14)

where M(x, v, y) = max{Gp(x, v, y), Gp(x, Tx, Tx), Gp(y, Ty, Ty)}.

Theorem 2.9 Let A and B be two nonempty subsets of a Gp-metric space (X,Gp),
(A,Gp) and (B,Gp) be complete Gp-metric spaces, A0 be nonempty set and B0 be
approximatively compact w.r.t. A. Assume that T : A ∪ B → A ∪ B is Gp − η-proximal
cyclic weak contraction such that T (A) ⊂ B, T (B) ⊂ A and T (A0) ⊆ B0 and T is
triangular η-proximal admissible mapping such that η(Tx1, Tx1, x0) ⩾ 1. Then T has a
best proximity point.

Proof. If x0 ∈ A0, then x1 = Tx0 ∈ T (A0) ⊆ B. thus, dGp(x0, Tx0) = dGp(x0, x1) =
dGp(A,B). Further since x2 = Tx1 ∈ T (B0) ⊆ A, it follows that dGp(x1, Tx1) =
dGp(x1, x2) = dGp(A,B). Recursively, we obtain sequence {xn} in A ∪ B satisfying
dGp(xn, xn+1) = dGp(A,B) for all n ∈ N ∪ {0}. In (14), set x = xn−1, u = xn+1, u∗ =
xn+1, y = xn and v = xn. Then we get

η(xn+1, xn+1, xn)Gp(xn+1, xn+1, xn) ⩽ ϕ(M(xn−1, xn, xn)), (15)
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where

M(xn−1, xn, xn) = max{Gp(xn−1, xn, xn), Gp(xn−1, Txn−1, Txn−1), Gp(xn, Txn, Txn)}

= max{Gp(xn−1, xn, xn), Gp(xn−1, xn, xn), Gp(xn, xn+1, xn+1)}

= max{Gp(xn−1, xn, xn), Gp(xn, xn+1, xn+1)}.

Let M(xn−1, xn, xn) = Gp(xn, xn+1, xn+1). Then we have ϕ(M(xn−1, xn, xn)) =
ϕ(Gp(xn, xn+1, xn+1)). Hence,

Gp(xn, xn+1, xn+1) = Gp(xn+1, xn+1, xn)

⩽ η(xn+1, xn+1, xn)Gp(xn+1, xn+1, xn)

= η(xn+1, xn+1, xn)Gp(xn, xn+1, xn+1)

⩽ ϕ(M(xn−1, xn, xn))

= ϕ(Gp(xn, xn+1, xn+1)).

So, Gp(xn, xn+1, xn+1) = 0; that is, xn = xn+1 and each xn is fixed point, which is
contradiction. Hence, M(xn−1, xn, xn) = Gp(xn−1, xn, xn) and Gp(xn, xn+1, xn+1) ⩽
ϕ(Gp(xn−1, xn, xn)) < Gp(xn−1, xn, xn), which implies that Gp(xn, xn+1, xn+1) <
Gp(xn−1, xn, xn). Thus, the sequence {Gp(xn, xn+1, xn+1)} is decreasing sequence in R+.
So, it is convergent to t ∈ R+. We claim that t = 0. Suppose on the contrary that t > 0.
Taking limit n→ ∞, we have

lim
n→∞

Gp(xn, xn+1, xn+1) ⩽ lim
n→∞

ϕ(Gp(xn−1, xn, xn)).

Thus, t ⩽ ϕ(t), which is contradiction. Hence, t = 0.

lim
n→∞

Gp(xn, xn+1, xn+1) = 0. (16)

Now, we will show that {xn} is an Gp-Cauchy sequence. Suppose on the contrary that,
there exists ϵ > 0 and a subsequence {xn(k)} of {xn} such that

Gp(xm(k), xn(k), xn(k)) ⩾ ϵ (17)

with n(k) ⩾ m(k) > k. Further, corresponding to value of m(k), we can choose n(k) in
such a way that it is the smallest integer satisfying inequality (17). Hence,

Gp(xm(k), Gp(x(n(k)−1), Gp(xn(k)−1)) < ϵ.

By (16) and (17), we have

ϵ ⩽ Gp(xm(k), xn(k), xn(k))

= Gp(xm(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xn(k), xn(k))−Gp(xn(k)−1, xn(k)−1, xn(k)−1)

⩽ Gp(xm(k), xn(k)−1, xn(k)−1) +Gp(xn(k)−1, xn(k), xn(k)).
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By taking limit, lim
k→∞

Gp(xm(k), xn(k), xn(k)) = ϵ. Now, let Gp(xn(k), xn(k)+1, xn(k)+1) < ϵ

and Gp(xm(k), xm(k)+1, xm(k)+1) < ϵ for all k ⩾ k0 with a k0 ∈ N . Then, for all k ⩾ k0,

Gp(xm(k), xn(k), xn(k)) =M(xm(k), xn(k), xn(k)).

So lim
k→∞

M(xm(k), xn(k), xn(k)) = ϵ, and for all k ∈ N ,M(xm(k), xn(k), xn(k)) ⩾ ϵ (by (17)).

Since ϕ is upper semi-continuous from the right, we deduce that

lim sup
k→∞

ϕ(M(xm(k), xn(k), xn(k))) ⩽ ϕ(ϵ).

Also,

ϵ ⩽ Gp(xm(k), xn(k), xn(k))

= Gp(xn(k), xn(k), xm(k))

⩽ Gp(xn(k), xm(k), xm(k)) +Gp(xm(k), xn(k), xm(k))−Gp(xm(k), xm(k), xm(k))

= Gp(xm(k), xm(k), xn(k)) +Gp(xm(k), xn(k), xm(k))−Gp(xm(k), xm(k), xm(k))

⩽ η(xm(k), xm(k), xn(k))Gp(xm(k), xm(k), xn(k)) +Gp(xm(k), xn(k), xm(k))

−Gp(xm(k), xm(k), xm(k))

⩽ ϕ(M(xm(k), xn(k), xn(k))) +Gp(xm(k), xn(k), xm(k))−Gp(xm(k), xm(k), xm(k))

⩽ ϕ(M(xm(k), xn(k), xn(k))) +Gp(xm(k), xn(k), xn(k)) +Gp(xn(k), xn(k), xm(k))

−Gp(xn(k), xn(k), xn(k))−Gp(xm(k), xm(k), xm(k)).

Taking limit k → ∞, then ϵ ⩽ ϕ(ϵ) < ϵ. Consequently limm,n→∞Gp(xm, xn, xn) = 0 and
{xn} is a Cauchy sequence in Gp-complete Gp-metric space (X,Gp). Since A and B are
complete, there exists z ∈ A ⊂ A ∪B such that xn → z as n→ ∞. On the other hand,

dGp(z,B) ⩽ dGp(z, Txn)

= dGp(z, xn+1)

⩽ dGp(z, xn) + dGp(xn, xn+1)

⩽ dGp(z, xn) + dGp(xn, xn+1)

⩽ dGp(z, xn) + dGp(A,B)

⩽ dGp(z, xn) + dGp(z,B)

for each n ∈ N . Taking limit n→ ∞ in above inequality, we get

dGp(z,B) ⩽ lim
n→∞

dGp(z, Txn)

= dGp(z,B)

= dGp(A,B).

Since B is approximatively compact w.r.t. A, so the sequence {Txn} has a subsequence
{Txn(k)} that converges to some y∗ ∈ B ⊂ A ∪B. Hence,

dGp(z, y∗) = limn→∞ dGp(xn(k), Txn(k)) = dGp(A,B).
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So, z ∈ A0. Now, since Tz ∈ T (A0) ⊆ B0, there exists w ∈ A0 such that dGp(w, Tz) =
dGp(A,B). From given condition (14) with x = xn−1, u = w, u∗ = z, y = xn and v = xn,
we get

Gp(z, w, xn) ⩽ η(z, w, xn)Gp(z, w, xn) ⩽ ϕ(M(xn−1, xn, xn)), (18)

where

M(xn−1, xn, xn) = max{Gp(xn−1), xn, xn), Gp(xn−1, Txn−1, Txn−1), Gp(xn, Txn, Txn)}

= max{Gp(xn−1, xn, xn), Gp(xn, xn+1, xn+1)}.

Using (18), we have

Gp(z, w, xn) ⩽ η(z, w, xn)Gp(z, w, xn) ⩽ ϕ(max{Gp(xn−1, xn, xn), Gp(xn, xn+1, xn+1)}).

Taking limit n→ ∞, we get Gp(z, w, z) ⩽ ϕ(0) = 0 and so, Gp(z, z, w) = 0. This implies
z = w. Thus, dGp(z, Tz) = dGp(A,B) and T has a best proximity point. ■

If we consider the above theorem with η(u∗, u, v) = 1 and ϕ(t) = t, then we get the
following corollary.

Corollary 2.10 Let A,B be two non-empty subsets of a Gp-metric space (X,Gp) such
that (A,Gp), (B,Gp) are complete Gp-metric spaces, A0 is non-empty and B0 is approx-
imatively compact w.r.t. A. Assume that T : A ∪B → A ∪B such that

dGp(u, Tu∗) = dGp(A,B)
dGp(u∗, Tu) = dGp(A,B)
dGp(v, Ty) = dGp(A,B)

 =⇒ Gp(u∗, u, v) ⩽M(x, v, y),

where M(x, v, y) = max{Gp(x, v, y), Gp(x, Tx, Tx), Gp(y, Ty, Ty)}, T (A) ⊂ B, T (B) ⊂
A and T (A0) ⊂ B0. Then T has a best proximity point.

Example 2.11 Let X = {0, 1, 2, 3} and

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2), (3, 0, 0), (0, 3, 0), (0, 0, 3),

(1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 3, 3, ), (3, 1, 3), (3, 3, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)},

B = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (0, 3, 3), (3, 0, 3), (3, 3, 0),

(2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (1, 3, 1), (1, 1, 3), (3, 2, 2), (2, 3, 2), (2, 2, 3)}.

Define Gp : X ×X ×X → R+ by

Gp(x, y, z) =



1, if x = y = z ̸= 2,

0, if x = y = z = 2,

2, if (x, y, z) ∈ A,
5
2 if (x, y, z) ∈ B,

3 x ̸= y ̸= z ̸= x.

Define the mappings T : A ∪B → A ∪B for A = {0, 2} and B = {1, 3} by
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T (x) =

{
0 if x = 3

x+ 1 otherwise
and η(x, y, z) =

{
1 if x ∈ A ∪B
0 otherwise

Also, consider ϕ : [0,∞) → [0,∞) by ϕ(t) = 9t
10 . Clearly dGp(A,B) = 1, T (A) ⊂ B,

T (B) ⊂ A and T is a Gp-η-cyclic weak contraction for u = u∗ = 2, x = 0 ∈ A and
v = 1, y = 3 ∈ B. Thus, we have

Gp(u
∗, u, v) = Gp(2, 2, 1) = 2

and

M(x, v, y) = max{Gp(x, v, y), Gp(x, Tx, Tx), Gp(y, Ty, Ty)}

= max{Gp(0, 1, 3), Gp(0, 1, 1), Gp(3, 1, 1)}

= max{3, 5
2
,
5

2
}

= 3.

Hence,

η(u∗, u, v)Gp(u
∗, u, y) ⩽ ϕ(M(x, v, y)).

Thus,

dGp(u, Tu
∗) = dGp(A,B)

dGp(u
∗, Tu) = dGp(A,B)

dGp(v, Ty) = dGp(A,B)

 =⇒ η(u∗, u, v)Gp(u
∗, u, v) ⩽M(x, v, y).

Hence, T is Gp-η-cyclic weak contraction mapping. All conditions of above theorem holds
and T has a best proximity point. Here, z = 0 is best proximity point of T .

As an application to our best proximity point results we here derive fixed point theorem
as in the form of the following. As in definition, we have

dGp(u, Tu
∗) = dGp(A,B)

dGp(u
∗, Tu) = dGp(A,B)

dGp(v, Ty) = dGp(A,B)

 =⇒ η(u∗, u, v)Gp(u
∗, u, v) ⩽ ϕ(M(x, v, y)). (19)

If we consider A = B = X, then

u = Tu∗

u∗ = Tx
v = Ty

 =⇒ u = T 2(x).

Then condition (19) becomes η(Tx, T 2x, Ty)Gp(Tx, T
2x, Ty) ⩽ ϕ(M(x, Ty, y)). Now, we

have the following fixed point theorem.

Theorem 2.12 Let (X,Gp) be a complete Gp-metric space and T : X → X be a
mapping satisfying the following condition

η(Tx, T 2x, Ty)Gp(Tx, T
2x, Ty) ⩽ ϕ(M(x, Ty, y))
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for all x, y ∈ X and ϕ ∈ Φ. Then T has a fixed point.
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