Solvability of infinite systems of differential equations of general order in the sequence space $bv_{\infty}$
Subject Areas : Fixed point theoryM. H. Saboori 1 , M. Hassani 2 , R. Allahyari 3 *
1 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
3 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Keywords: Differential equation, measure of noncompactness, Meir-Keeler condensing operator, Green function, sequence space,
Abstract :
We introduce the Hausdorff measure of noncompactness in the sequence space $bv_{\infty}$ and investigate the existence of solution of infinite systems of differential equations with respect to Hausdorff measure of noncompactness. Finally, we present an example to defend of theorem of existential.
[1] A. Aghajani, R. Allahyari, M. Mursaleen, A generalizations of Darbo’s theorem whit application to the solvability of systems of integral equations, J. Comput. Appl. Math. 246 (2014), 68-77.
[2] A. Aghajani, J. Banas, Y. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl. 62 (2011), 1215-1227.
[3] A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon. Stevin. 20 (2013), 345-358.
[4] A. Aghajani, M. Mursaleen, A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta. Math. Sci. 35B (2015), 552-566.
[5] A. Alotaibi, M. Mursaleen, S. A. Mohiuddine, Application of measure of noncompactness to infinite system of linear equations in sequence spaces, Bull. Iran. Math. Soc. 41 (2015), 519-527.
[6] J. Banas, K. Goebel, Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.
[7] J. Banas, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math. 137 (2001), 363-375.
[8] F. Basar, B. Altay, On the space of sequences of p−bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), 136-147.
[9] R. Bellman, Nonlinear Analysis, Vol. II, Academic Press, New york, 1973.
[10] G. Darbo, Punti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova. 24 (1955), 84-92.
[11] K. Deimling, Ordinary Differential Equations in Banach spaces, Lecture Notes in Mathematics, Vol. 596, Springer, Berlin, 1977.
[12] A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci. 15 (2021), 241-251.
[13] A. Das, S. A. Mohiuddine, A. Alotaibi, B. C. Deuri, Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces, ALex. Eng. J. 61 (3) (2022), 2010-2015.
[14] D. G. Duffy, Green’s Function with Applications, Chapman and Hall, CRC Press, London, 2001.
[15] E. Hille, Pathology of infinite systems of linear first order differential equations with constant coefficient, Ann. Math. Pura Appl. 55 (1961), 135-144.
[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential equations, North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, 2006.
[17] K. Kuratowski, Sur Les espaces complets, Fund Math. 15 (1930), 301-309.
[18] M. Mursaleen, Some geometric properties of a sequence space related to lp, Bull. Aust. Math. Soc. 67 (2) (2003), 343-347.
[19] M. Mursaleen, S. A. Mohiuddine, Applications of measure of noncompactness to the infinite system of differential equations in ℓp spaces, Nonlinear Anal. 75 (2012), 2111-2115.
[20] M. N. Oguzt Poreli, On the neural equations of Cowan and Stein, Utilitas Math. 2 (1972), 305-315.
[21] M. Rabbani, A. Das, B. Hazarika, R. Arab, Existence of solution for two dimensional non-linear fractional integral equation by measure of noncompactness and iterative algorithm to solve, J. Comput. App. Math. 370 (2020), 370:112654.
[22] M. Rabbani, A. Das, B. Hazarika, R. Arab, Measure of noncompactness of a new space of temperd sequences and its application on fractional differential equations, Chaos. Soli. Fact. 140 (2020), 140:110221.
[23] H. M. Srivastava, S. V. Bedre, S. M. Khairnar, B. S. Desale, Krasnose´lskii type hybrid fixed point theorems and their applications to fractional integral equations, Abstr. Appl. Anal. (2014), 2014:710746.
[24] A. Voigt, Line method approximations to the Cauchy problem for nonlinear parabolic differential equations, Numer. Math. 23 (1974), 23-36.
[25] W. Walter, Differential and Integral Inequalities, Springer, Berlin, 1970.
[26] O. A. Zautykov, Countable systems of differential equations and their applications, Differ. Uravn. 1 (1965), 162-170.