تاثیر میکرولیپوزومهای حاوی ترکیبات فنلی و توکوفرولی روغن مغز بنه (Pistacia atlantica ) بر پایداری کره
محورهای موضوعی : میکروبیولوژی مواد غذاییمهسا نیکخواه 1 , ژاله خوشخو 2 , سیدابراهیم حسینی 3 , پیمان مهستی 4 , افشین آخوندزاده 5
1 - دانشجوی دکتری علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار گروه علوم و مهندسی صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - استاد تمام گروه بهداشت و کنترل مواد غذایی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
کلید واژه: پایداری, ترکیبات فنلی, توکوفرولها, روغن مغز بنه, کره, میکرولیپوزوم,
چکیده مقاله :
مقدمه: پسته وحشی (بنه) بهعنوان یکی از منابع گیاهی غنی از ترکیبات فنلی و توکوفرول، دارای اثرات آنتیاکسیدانی، درمانی و ضدمیکروبی قابلتوجهی است. پوشش دهی بهعنوان روش موثر برای بهبود پایداری و جلوگیری از طعم نامطلوب ترکیبات فنلی میتواند مورد استفاده قرار گیرد، بنابراین در این پژوهش تاثیر میکرولیپوزوم های حاوی ترکیبات فنلی و توکوفرولی روغن مغز بنه، بر پایداری اکسایشی کره مورد بررسی قرار گرفت.مواد و روش ها: لیپوزوم ها با استفاده از غلظت های لسیتین به کلسترول (60-0، 50-10، 40-20 و 30-30) تهیه شدند. به منظور تعیین خواص کاربردی میکرولیپوزوم ها آزمون های تعیین اندازه ذرات، پایداری فیزیکی، پتانسیل زتا و فعالیت آنتی اکسیدانی بررسی گردید، سپس براساس نتایج، فرمولاسیون بهینه (تیمار M3) میکرولیپوزوم در غلظت های 100، 200 و 400 میلی گرم به هزار گرم خامه اضافه شدند و با آنتی اکسیدان BHTتوسط شاخص های عدد پراکسید، عدد اسیدی و پایداری اکسایشی به منظور بررسی پایداری کره طی دوره 120 روزه نگهداری مورد بررسی قرار گرفتند. کلیه آزمایشات در قالب طرح کاملاٌ تصادفی انجام شدند و میانگین ها توسط نرم افزار MStatC و براساس آزمون دانکن در سطح 5 % مقایسه گردید.یافته ها: اندازه ذرات لیپوزوم ها در محدودۀ μm 4-9 بود. افزودن کلسترول اثر معنی داری بر اندازه ذرات داشت. افزودن کلسترول پتانسیل زتا نمونه ها را افزایش داد. در کل غلظت 40 به 20 میلی گرم لسیتین به کلسترول به عنوان غلظت بهینه در تولید میکرولیپوزوم ها شناخته شد و از آن در پایداری اکسایشی کره استفاده گردید. نتایج نشان داد که تیمارN400 (نمونه حاوی 400 میلی گرم میکرولیپوزوم حاوی ترکیبات فنلی و توکوفرولی روغن مغز بنه) بیشترین پایداری را دارا بود.نتیجه گیری: نتایج حاصل از این تحقیق نشان داد، با استفاده از ترکیبات فنلی و توکوفرولی روغن مغز بنه و ریزپوشانی آن ها به صورت میکرولیپوزوم می توان از آن در جلوگیری از فساد شیمیایی و افزایش ماندگاری و ویژگیهای فراسودمند خامه و کره مشتق شده از آن بهره برد و گام مثبتی در جهت تولید محصولات عملگرا و ارتقاء سلامتی مصرف کنندگان برداشت.
Introduction: Wild pistachio (pistacia atlantica), as a plant source is rich in phenolic and tocopherol content that has significant antioxidant, therapeutic and antimicrobial effects. Encapsulation can be used as an effective method to improve the stability and prevent undesirable taste of phenolic compounds. Therefore in this study, the effect of micro liposomes containing phenolic and tocopherol compounds of pistacia atlantica (Beneh) oil on oxidative stability of butter was investigated.Results: The particle size of liposome was in the range of 4-9μm. The addition of cholesterol had a significant effect on particle size. The addition of cholesterol increased the zeta potential of the samples. The total concentration of 40 to 20 mg lecithin to cholesterol was identified as an optimal concentration in the production of micro liposomes and it was used in determination of oxidative stability of butter. The results showed that N400 (sample containing 400 mg / 1000g of phenolic and tocopherol compounds of pistacia atlantica) had the highest stability.Conclusion: The results of this study showed that use of phenolic and tocopherol compounds of Beneh kernel oil, in form of microcapsules might be used to prevent chemical spoilage and also increase the shelf life and beneficial properties of cream and butter derived it, and it has taken a positive step towards producing functional products and promoting consumer health.
Alexander, M., Acero Lopez, A., Fang, Y. & Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Food Sci. Technol, 47, 427-436.
Association of Official Analytical Chemists. (AOAC) (2005). Official Methods of Analysis of the AOAC (15 th Ed.) Arlinton, AOAC, USA, 10–12.
Burt, S. (2004). Essentialoils: their antibacterial propertied and potential application in foods-a review. Int. Food Microbiol, 94 (3), 223- 253.
Capannesi, C., Palchetti, I., Mascini, M. & Parenti, A. (2000). Electrochemicalsensor and biosensor for polyphenols detection in olive oils. Journal of Food Chemistry, 71, 553–562.
Carabulut, J., Alcaraz, M. & Benavente, O. (2010). Antioxidant and radioprotective effects of olive leaf extract. 951–958.
Chanda, H., Das, P., Chakraborty, H. & Ghosh, A. (2011). Development and evaluation of liposomes of fluconazole. Journal of Pharmaceutical and Biomedical Sciences, 5, 2230-7885.
Delazar, A., Lotfipour, F. & Nazemiyeh, H. (2012). Antioxidant and Antimicrobial activity of Pedicularis sibthorpii Boiss. And Pedicularis wilhelmsiana Fisch ex. Advanced Pharmaceutical Bulletin, 2(1), 89-92.
Farhoosh, R. & Sharif, A. (2009). Bene hull oil as a highly stable and antioxidative vegetable oil. Eur J Lipid Sci Technol, 111, 1259-65.
Farhoosh, R., Tavassoli-Kafrani M. H. & Sharif, A. (2011). Antioxidant activity of sesame, rice bran and bene hull oils and their unsaponifiable matters. European Journal of Lipid Science and Technology, 113, 506-512.
Fatouros, D. G. & Antimisiaris, S. G. (2002). Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin. Journal of colloid and interface science, 251(2), 271-277.
Feng, Z. & Bhandari, B. (2010). Encapsulation of polyphenols, a Review. Trends Food Science, 21(10), 510-523.
Gibis, M., Vogt, E. & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3, 246 -254.
González-Paredes, A., Clarés-Naveros, B., RuizMartínez, M. A., Durbán-Fornieles, J. J., Ramos-Cormenzana, A. & Monteoliva-Sánchez, M. (2011). Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm, 421(2), 321-31
Gopinath, D., Ravi, D., Rao, B., Apte, S., Renuka, D. & Rambhau, D. (2004). Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int. J. Pharm., 271(1), 95-113.
Keller, B. C. (2001). Liposomes in nutrition. Trends. Food Sci. Tech., 12(1), 25-31.
Liu, N. & Park, H. J. (2010). Factors effect on the loading efficiency of Vitamin C loadedchitosan-coatednanoliposomes Colloids and Surfaces. B. Biointerfaces,76,16-19.
Lu, Q., Li, D. C. & Liang, J. G. (2011). Preparation of a Tea Polyphenol Nanoliposome System and Its Physicochemical Properties. J. Agric. Food Chem. 59, 13004–13011.
Malheiros, P. D. S., Sant Anna, V., Barbosa, M. D. S., Brandelli, A. & Franco, B. D. G. D. M. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas technological approach. Biotechnol. Annu. Rev., 7, 59- 85.
Manafi, M., Haddad Khodaparast, M.H., Azadmard Damirchi, S., Valizadeh, H. & Tabatabaei, F. (2018). Preparation and some characteristics of Nano liposomes containing olive leaf extract. Iranian Journal of Food Science and Technology, 14(2), 155-163.
Marsanasco, M., Márquez, A. L., Wagner, J. R., Alonso, S. D. V. & Chiaramoni, N. S. (2011). Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, 44(9), 3039-3046.
McClements, D. J. & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159, 213–228
Mohammadi, M., Ghanbarzadeh, B., Hamishehkar, H., Rezaei Mokarram, R. & Mohammadifar, M.A. (2014). Study of physical properties of vitamin D3- loaded nanoliposomes, prepared by thin layer hydration- sonication method. Iranian J. Nutr. Sci. Food Tech, 8(4), 175-188.
Morello, J. R., Motilva, M. J., Tovar, M. J. & Romero, M. P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem, 85, 357–364.
Mozafari, M. R. (2010). Nanoliposomes: preparation and analysis. Methods in molecular biology, Pp. Springer, 29-50.
Mozafari M. R., Khosravi-Darani K., Borazan G.G., Cui, J., Pardakhty A. & Yurdugul S. (2011). Encapsulation of Food Ingredients Using Nanoliposome Technology. International Journal of Food Properties, 11, 833-844.
Pokorney, J., Yanishheva, N. & Gordon, M. (2001). Antioxidant in food. CRC press.1st end,Newyork,U.S. A , 380.
Quiles, J., Ramırez-Tortosa, C., Alfonso Gomez, J., Huertas, J. & Mataix, J. (2002). Role of vitamin E and phenolic compounds in the antioxidant capacity, measured by ESR, of virgin olive, olive and sunflower oils after frying. Food Chemistry, 76, 461–468.
Rasti, B., Jinap, S., Mozafari, M. R. & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135(4), 2761-2770.
Rezai, S., Jafari, M., Khamiri, M. & Bayat H. (2015). Effect of solvent and method extraction on antioxidant activity walnut green husk extraction (shahmirzad). Food Technology & Nutrition, 12, 85-95
Sadeghizadeh yazdi, J., Mazaheri Tehrani, M., Habibi, M. & Razavi, S. (2017). Functional Properties and Sensory Evaluation of Cream Mixed Vegetable and Dairy; 15 (5), 180-191 [In persian].
Sebaaly, C., Greige-Gerges, H., Agusti, G., Fessi, H. & Charcosset, C. (2016). Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. Journal of Liposome Research, 26(2), 126-38.
Shahidi, F., Zegarska, Z., Rafalowski, R., Amarowicz, R. & Karamac, M. (1998). Stabilization of butter with deodorized rosemary extract. Food Science and Technology, (206), 99–102.
Shin, G. H., Chung, S. K., Kim, J. T., Joung, H. & Park, H. J. (2013). Preparation of Chitosan-Coated Nanoliposomes for Improving the Mucoadhesive Property of Curcumin Using the Ethanol Injection Method. Journal of Agricultural and Food Chemistry, 61, 11119-11126.
Tabee, E., Azadmard-damirchi, S., Jagerstad, M. & Dutta, P.C. (2008). Effects of α-tocopherol on oxidative stability on phytosterol oxidation during heating on some regular and high oleic vegetable oils. Journal of American Oil Chemists Society, (85), 857–867.
Tavakoli, J. & Pazhouhanmehr, S. (2010). Fatty acid composition of oils from fruits of three Pistacia Species growing in Iran. Journal of Chemistry of Natural Compounds, 46, 623-624.
Wu, L., Zhang, J. & Watanabe, W. (2011). Physical and chemical stability of drug nanoparticle. Advanced drug delivery reviews, 63(6), 456-469.
Zhang, Z., Liao, Li., L., Moore, J., Wu, T. & Wang. (2009). Antioxidant phenolic compounds from walnut kernels..(Juglans regia L.). Food Chemistry, 113, 160-5.
_||_Alexander, M., Acero Lopez, A., Fang, Y. & Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Food Sci. Technol, 47, 427-436.
Association of Official Analytical Chemists. (AOAC) (2005). Official Methods of Analysis of the AOAC (15 th Ed.) Arlinton, AOAC, USA, 10–12.
Burt, S. (2004). Essentialoils: their antibacterial propertied and potential application in foods-a review. Int. Food Microbiol, 94 (3), 223- 253.
Capannesi, C., Palchetti, I., Mascini, M. & Parenti, A. (2000). Electrochemicalsensor and biosensor for polyphenols detection in olive oils. Journal of Food Chemistry, 71, 553–562.
Carabulut, J., Alcaraz, M. & Benavente, O. (2010). Antioxidant and radioprotective effects of olive leaf extract. 951–958.
Chanda, H., Das, P., Chakraborty, H. & Ghosh, A. (2011). Development and evaluation of liposomes of fluconazole. Journal of Pharmaceutical and Biomedical Sciences, 5, 2230-7885.
Delazar, A., Lotfipour, F. & Nazemiyeh, H. (2012). Antioxidant and Antimicrobial activity of Pedicularis sibthorpii Boiss. And Pedicularis wilhelmsiana Fisch ex. Advanced Pharmaceutical Bulletin, 2(1), 89-92.
Farhoosh, R. & Sharif, A. (2009). Bene hull oil as a highly stable and antioxidative vegetable oil. Eur J Lipid Sci Technol, 111, 1259-65.
Farhoosh, R., Tavassoli-Kafrani M. H. & Sharif, A. (2011). Antioxidant activity of sesame, rice bran and bene hull oils and their unsaponifiable matters. European Journal of Lipid Science and Technology, 113, 506-512.
Fatouros, D. G. & Antimisiaris, S. G. (2002). Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin. Journal of colloid and interface science, 251(2), 271-277.
Feng, Z. & Bhandari, B. (2010). Encapsulation of polyphenols, a Review. Trends Food Science, 21(10), 510-523.
Gibis, M., Vogt, E. & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3, 246 -254.
González-Paredes, A., Clarés-Naveros, B., RuizMartínez, M. A., Durbán-Fornieles, J. J., Ramos-Cormenzana, A. & Monteoliva-Sánchez, M. (2011). Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm, 421(2), 321-31
Gopinath, D., Ravi, D., Rao, B., Apte, S., Renuka, D. & Rambhau, D. (2004). Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int. J. Pharm., 271(1), 95-113.
Keller, B. C. (2001). Liposomes in nutrition. Trends. Food Sci. Tech., 12(1), 25-31.
Liu, N. & Park, H. J. (2010). Factors effect on the loading efficiency of Vitamin C loadedchitosan-coatednanoliposomes Colloids and Surfaces. B. Biointerfaces,76,16-19.
Lu, Q., Li, D. C. & Liang, J. G. (2011). Preparation of a Tea Polyphenol Nanoliposome System and Its Physicochemical Properties. J. Agric. Food Chem. 59, 13004–13011.
Malheiros, P. D. S., Sant Anna, V., Barbosa, M. D. S., Brandelli, A. & Franco, B. D. G. D. M. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas technological approach. Biotechnol. Annu. Rev., 7, 59- 85.
Manafi, M., Haddad Khodaparast, M.H., Azadmard Damirchi, S., Valizadeh, H. & Tabatabaei, F. (2018). Preparation and some characteristics of Nano liposomes containing olive leaf extract. Iranian Journal of Food Science and Technology, 14(2), 155-163.
Marsanasco, M., Márquez, A. L., Wagner, J. R., Alonso, S. D. V. & Chiaramoni, N. S. (2011). Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, 44(9), 3039-3046.
McClements, D. J. & Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 159, 213–228
Mohammadi, M., Ghanbarzadeh, B., Hamishehkar, H., Rezaei Mokarram, R. & Mohammadifar, M.A. (2014). Study of physical properties of vitamin D3- loaded nanoliposomes, prepared by thin layer hydration- sonication method. Iranian J. Nutr. Sci. Food Tech, 8(4), 175-188.
Morello, J. R., Motilva, M. J., Tovar, M. J. & Romero, M. P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem, 85, 357–364.
Mozafari, M. R. (2010). Nanoliposomes: preparation and analysis. Methods in molecular biology, Pp. Springer, 29-50.
Mozafari M. R., Khosravi-Darani K., Borazan G.G., Cui, J., Pardakhty A. & Yurdugul S. (2011). Encapsulation of Food Ingredients Using Nanoliposome Technology. International Journal of Food Properties, 11, 833-844.
Pokorney, J., Yanishheva, N. & Gordon, M. (2001). Antioxidant in food. CRC press.1st end,Newyork,U.S. A , 380.
Quiles, J., Ramırez-Tortosa, C., Alfonso Gomez, J., Huertas, J. & Mataix, J. (2002). Role of vitamin E and phenolic compounds in the antioxidant capacity, measured by ESR, of virgin olive, olive and sunflower oils after frying. Food Chemistry, 76, 461–468.
Rasti, B., Jinap, S., Mozafari, M. R. & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135(4), 2761-2770.
Rezai, S., Jafari, M., Khamiri, M. & Bayat H. (2015). Effect of solvent and method extraction on antioxidant activity walnut green husk extraction (shahmirzad). Food Technology & Nutrition, 12, 85-95
Sadeghizadeh yazdi, J., Mazaheri Tehrani, M., Habibi, M. & Razavi, S. (2017). Functional Properties and Sensory Evaluation of Cream Mixed Vegetable and Dairy; 15 (5), 180-191 [In persian].
Sebaaly, C., Greige-Gerges, H., Agusti, G., Fessi, H. & Charcosset, C. (2016). Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. Journal of Liposome Research, 26(2), 126-38.
Shahidi, F., Zegarska, Z., Rafalowski, R., Amarowicz, R. & Karamac, M. (1998). Stabilization of butter with deodorized rosemary extract. Food Science and Technology, (206), 99–102.
Shin, G. H., Chung, S. K., Kim, J. T., Joung, H. & Park, H. J. (2013). Preparation of Chitosan-Coated Nanoliposomes for Improving the Mucoadhesive Property of Curcumin Using the Ethanol Injection Method. Journal of Agricultural and Food Chemistry, 61, 11119-11126.
Tabee, E., Azadmard-damirchi, S., Jagerstad, M. & Dutta, P.C. (2008). Effects of α-tocopherol on oxidative stability on phytosterol oxidation during heating on some regular and high oleic vegetable oils. Journal of American Oil Chemists Society, (85), 857–867.
Tavakoli, J. & Pazhouhanmehr, S. (2010). Fatty acid composition of oils from fruits of three Pistacia Species growing in Iran. Journal of Chemistry of Natural Compounds, 46, 623-624.
Wu, L., Zhang, J. & Watanabe, W. (2011). Physical and chemical stability of drug nanoparticle. Advanced drug delivery reviews, 63(6), 456-469.
Zhang, Z., Liao, Li., L., Moore, J., Wu, T. & Wang. (2009). Antioxidant phenolic compounds from walnut kernels..(Juglans regia L.). Food Chemistry, 113, 160-5.