پروفیل پروتئینی گندم تحت تنش خشکی و نانوکلات پتاسیم
محورهای موضوعی :
اکوفیزیولوژی گیاهان زراعی
سدابه جهانبخش
1
*
,
نفیسه اصغری
2
,
علی عبادی
3
,
نصیبه توکلی
4
1 - عضو هیئت علمی دانشگاه
2 - دانشآموخته بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل ، ایران.
3 - استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
4 - دانشجوی دکتری فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
تاریخ دریافت : 1395/08/04
تاریخ پذیرش : 1395/11/06
تاریخ انتشار : 1396/05/01
کلید واژه:
تنش خشکی,
گندم,
اسیدهای آمینه,
پروتئومیکس,
نانو کلات پتاسیم,
چکیده مقاله :
سیستم های مقاومتی گیاهان از جمله گندم در مقابل تنش ها توسط روش های متعددی از جمله مواد شیمیایی مانند نانوکلات پتاسیم تحریک می گردد. به منظور بررسی پروفیل پروتئینی گندم تحت تنش خشکی، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار انجام گرفت. فاکتور اول شامل تنش خشکی در سه سطح (85، 60 و 35 درصد ظرفیت زراعی) و فاکتور دوم سه رقم گندم (زاگرس، چمران و کوهدشت) و فاکتور سوم سه سطح نانوکلات پتاسیم با غلظت های (صفر، 25، 45 و 65 ppm) بودند. تنش کم آبی در مرحله ی سه برگچه ای بر اساس ظرفیت زراعی به گلدان ها اعمال و سه روز پس از آن، نانوکلات پتاسیم با غلظت های مشخص روی برگ های گندم محلول پاشی شدند. بررسی ها نشان دادند در اثر تیمار نانوکلات پتاسیم غلظت اسید آمینه پرولین و کربوهیدرات که در مکانیسم های دفاعی گیاه نقش اساسی دارند، افزایش یافتند. میزان فعالیت کاتالاز و پلی فنل اکسیداز با افزایش غلظت نانوکلات پتاسیم کاهش و برعکس میزان فعالیت پراکسیداز افزایش یافت. نتایج حاصل از مطالعات پروتئومیکسی با استفاده از الکتروفورز دو بعدی نشان داد که بروز پروتئین های مؤثر که ناشی از نانوکلات پتاسیم در ارتباط مستقیم با سیستم دفاعی به صورت لکه های 11، 6، 5، 14 و 19 ظاهر شدند. پروتئین های بیان شده در این آزمایش شامل برخی از آنزیم های سیستم دفاعی مانند آسکوربات پراکسیدازها، گلوتاتیون s ترانسفرازها و پروتئین های شوک حرارتی بودند. همچنین، آنزیم های کلیدی چرخه گلیکولیز و چرخه تری کربوکسیلیک اسید شامل ایزوسیترات دهیدروژناز، تریوزفسفات ایزومراز، فسفوگلیکونات دهیدروژناز، گلیسرآلدهید 3 فسفات دهیدروژناز، فروکتوز بیس فسفات بیان شدند این امر نشانگر این موضــوع می باشد که تیمار نانوکلات پتاسیم، سطح گلوکز، فروکتـوز و سـاکارز و فـراوانی سـایر آنزیم های مرتبط با تنش های زیستی و غیر زیستی را افزایش می دهد.
چکیده انگلیسی:
Tolerant systems in plants including wheat are affected by several chemical factors, like nano-chelate potassium. Use of nano-chelated potassium under drought stress reduces its negative effects and increase yield. To study protein profiles of wheat under drought stress, a factorial experiment based on completely randomized design with three replications was performed. The first factore was three levels of irrigation (85%, 60% and 35% field capacity), the second factor consisted of three wheat cultivars (Zagros, Chamran and Kuhdasht) and the third factor consisted of four nano-chelated potassium concentrations (zero, 25, 45، 65 ppm). The results showed that concentrations of proline and carbohydrates which play a major role in plant defense mechanisms due to nano-chelated potassium treatment were increased. Catalase and butpolyphenol oxidase activity decreased with increasing concentrations of nano-chelate potassium, while peroxidase activity increased. The results of two dimentional electrophoretic studies showed changes of protein expression, due to the effect of nano-chelated potassium as a direct contact with the defensive system against drought stresses, such as 11, 6, 5, 19, 14 bands. Nano-chelated potassium is also associated with proteins involved in the metabolism of carbohydrates and protein and final energy production.
منابع و مأخذ:
Agarwal, S., and V. Pandey. 2004. Antioxidant enzyme resposes to NaCl stress in Cassia angustifolia. Plant Biology. 48: 555-560.
Ahmadi, A., P. Ehsanzadeh, and F. Jabbari. 2009. Introduction of plant physiology. Vol 1. Translated of Hopkin-s. University of Tehran Press. 653P. (In Persian).
Anderson, L. 2005. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. Journal of Physiology. 15: 563: 23-60.
Apel, K., and H. Heribert. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55: 373–399.
Arzani, A. 2008. Breeding of crop plants, fifth edition. Translate, Esfahan: Publication Center of Industrial Esfahan University. (In Persian).
Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances. 27: 84-93.
Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free prolin for water stress studies. Plant and Soil. 39: 205-208.
Beranova-Giorgianni, S. 2003. Proteome analysis by two-dimensional gel electroph and mass spectrometry: strength and limitation. Trends in Analytical Chemistry. 22: 273-81.
Bolen, D.W., and I.V. Baskakov. 2001. The osmophobic effect: Natural selection of a thermodynamic force in protein folding. Journal of Molecular Biology. 310(5): 955-963.
Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochenistery. 72: 248-254.
Chen, Q., L.M. Lauzon, A.E. DeRocher, and E. Vierling. 1993. Accumulation, stability, and localization of a major chloroplast heat-shock protein. Journal of Cell Biology. 110: 1873-1883.
Damerval, C., D.de. Vienne, M. Zivy, and H. Thiellement. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis. 7: 52-54.
Daneshian, J., Harvan Eslam, M. and Jonoubi, P. 2002. Study of quantitative and quality characteristics of soybean genotypes in deficit irrigation conditions. Iranian Journal of Crop Sciences. 11(3):393-409.
Edwards, R., D.P. Dixon, and V. Walbot. 2000. Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health. Trend Plant Science. 5: 193-198.
Gressel, J., and E. Galun. 1994. Genetic controls of photo- oxidant tolerance, pp. 237-274. In: Causes of photo-oxidative stress and amelioration of defense systems in plants. Foyer CH, Mullineaux PM, eds. CRC Press.
Hajduch, M., R. Rakwal, GK. Agrawal, and M. Yonekura Pretova. 2001. High-resolution twodimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/ fragmentation of ribulose-1,5-bisphosphate carboxylase/ oxygenase and induction of stress-related proteins. Electrophoresis. 22: 2824–2831
Hajiboland, R., and A. Joudmand. 2009. The K/Na replacement and function of antioxidant defense system. Acta Agriculturae Scandinavica Section B- Soil and Plant Science. 59(3): 246-259.
Hayat, S., and A. Ahmad. 2007. Salicylic acid: A plant hormone. Springer. 97-99.
Hirsch, J., K.C. Hansen, A.L. Burlingame, and M.A. Matthay. 2004. Proteomics: current techniques and potential applications to lung disease. American Journal of Physiology Lung Cell and Molecular Physiology. 287: 1-23.
Hong, Z., K. Lakkineni, Z. Zhang, D.P. Verma. 2000. Removal of feedback inhibition of delta (1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology. 122(4): 1129-1136.
Irigoyen, J.J., D.W. Emerich, and M. Sanchez-Diaz. 1992. Water stress inducedchanges in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Plant Physiology. 84: 55-60.
Kar, M., and D. Mishra. 1976. Catalase, peroxidase, and poly phenol oxidase activities during rice leaf senescence. Plant Physiology. 57: 315-319.
KaviKishor, P.B., S. Sangam, R.N. Amrutha, P. Sri Laxmi, K.R. Naidu, and K. Rao. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science. 88(3): 424-438.
Kilili, K.G., N. Atanassova, A. Vardanyan, N. Clatot, K. Al-Sabarna, P.N. Kanellopoulos, A.M. Makris, and S.C. Kampranis. 2004. Differential roles of tau class glutathione S-transferases in oxidative stress. Journal of Biological Chemistery. 279: 24540–24551.
Kim, H., T.H. Lee, E.S. Park, J.M. Suh, S.J. Park, H.K. Chung, O.Y. Kwon, Y.K. Kim, H.K. Ro, and M. Shong. 2000. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide induced apoptosis in thyroid cells. Journal of Biological Chemistery. 275: 18266–18270.
Kim, S.Y., H.H. Jang, and J.R. Lee. 2009. Oligomerization and chaperone activity of a plant 2 Cys peroxiredoxin in response to oxidative stress. Plant Science. 177: 227–232.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
Lovegrove, A., and R. Hooley. 2000. Gibberellin and abscisic acid signalling in aleurone. Science Ltd. 5: 1360-1385.
Magbanua, Z.V., C.M.D. Moraes, T.D. Brooks, W.P. Williams, and D.S. Luthe. 2007. Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Molecular Plant Microbe Interact. 20(6): 697–706.
Manning, V.A., L.K. Hardison, and L. Ciuffetti. 2007. Ptr ToxA interacts with a chloroplast- localized protein. Molecular Plant Microbe Interactions. 20: 168- 177.
Mauch, F., B. Mauch-Mani, C. Gaille, B. Kull, D. Haas, and C. Reimmann. 2001. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant Journal. 25: 67–77.
Mc Lean, M.D., D.P. Yevtushenko, A. Deschene, O.R.V. Cauwenberghe, A. Makhmoudova, J.W. Potter, A.W. Bown, and B.J. Shelp. 2003. Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root- knot nematode. Molecular Breeding. 11: 277-285.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7: 405-410.
Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Science. 9(10): 490-498.
Moons, A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins and Hormones Series. 72: 155–202.
Ohtsuka, K., D. Kawashima, Y. Gu, and K. Saito. 2005. Inducers and co-inducers of molecular chaperones. International Journal of Hyperthermia. 21(8): 703-11.
Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany. 53: 1305- 1319.
Singh Gill, S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants: A Review. Plant Physiology and Biochemistry. 48: 909-930.
Springer, N.M., C.A. Napoli, D.A. Selinger, R. Pandry, K.C. Cone, V.L. Chandler, and S. Kaeppler. 2003 Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the ivergence monocots and dicots. Plant Physiology. 132: 907-925.
Tasgın, E., O. Atici, and B. Nalbantoglu. 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation. 41: 231–236.
Tavakoli Hasanaklou1, H., A. Ebadi, and S. Jahanbakhsh. 2014. Study of some tolerance mechanisms to water dificit stress in bread wheat genotypes (Triticum aestivum L.). Cereal Research. 4(1): 13-25. (In Persian).
Thipyapong, P., J. Melkonian, D.W. Wolfe, and J.C. Steffens. 2004. Suppression of polyphenol oxidasesincreases stress tolerance in tomato. Plant Science. 167: 693–703.
Turkan, I., M. Bor, F. Ozdemir, and H. Koca. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science. 168: 223-231.
Wang, C., Q.H. Ma, Z.B. Lin, P. He, and J.Y. Liu. 2008. Cloning and characterization of a cDNA encoding 14-3-3 protein with leaf and stem-specific expression from wheat DNA sequence. Plant Cell. 19: 130-136.
Wittmann-Liebold, B., H.R. Graack, and T. Pohl. 2006. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 6: 4688-4803.
Zand, B., A. Soroushzadeh, F. Ghanati, and F. Moradi. 2009. Effect of Zn and IBA application on the some antioxodant enzymes activity in maize. Journal of Iranian Plant Biology. 2: 35-48.
Zhang, H., Sh. Zhang, Q. Meng, J. Zou, W. Jiang, and D. Liu. 2009. Effects of aluminum on nucleoli in root tip cells, root growth and the antioxidant defense systemin Vicia faba L. Acta Biologica Cracoviensia Series Botanica. 51: 99–106.
Zhou, Y., K.H. Kok, A.C. Chun, C.M. Wong, H. Wu, M.C. Lin, P.C. Fung, H. Kung, and D.Y. Jin. 2000. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochemical and Biophysical Research Communications. 268: 921–927.
· Zhu, J.K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology. 124: 941-948.
_||_