کاربرد نانوآب ژل ها در بهبود عملکرد زخم پوش ها و دارورسانی
محورهای موضوعی : شیمی کاربردی
محمد حسین کرمی
1
,
مجید عبدوس
2
*
,
محمد رضا کلایی
3
,
امید مرادی
4
1 - پژوهشگر پسادکتری، دانشکده شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران. |دانشیار مرکز تحقیقات فناوری نانو، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران
2 - استاد دانشکده شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران
3 - دانشیار گروه مهندسی پلیمر، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران|مرکز تحقیقات فناوری نانو، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران
4 - دانشیار گروه شیمی، دانشگاه آزاد اسلامی واحد شهر قدس، شهر قدس، ایران
کلید واژه: رهایش دارو, پادباکتری, زخمپوش, نانوآب ژل, نانوذره های فلزی,
چکیده مقاله :
یکی از شایع ترین بیماری های بالینی، زخم شدن پوست است که به عنوان آسیب به ساختار یا یکپارچگی بافت پوست تعریف می شود. نانوآب ژل میتواند با حبس کردن دارو یا بارگذاری داروها به رهاسازی پایدار دارو کمک کنند و درنتیجه موجب بهبود زخم شوند. آب ژل یک شبکه آب دوست سه بعدی است که در آب یا محلول های آبی نامحلول و قادر به جذب آب یا سایر سیال های زیستی است که می تواند موجب بهبودی زخم شود. نانوآب ژل های گوناگونی برای بالابردن کیفیت زخم پوش ها تهیه شده اند. همچنین، در رهایش دارو هم، نانوآب ژل ها کاربرد دارند. مزیت آب ژلها نسبت به زخم پوش های سنتی، توانایی آنها در فرایند بهبود زخم است. آب ژل ها به دلیل ویژگی های یگانه خود، موجب شده اند زخم پوش های مدرن زخم، بیشینه معیارهای کیفی را داشته باشند. از ویژگی یگانه نانوآب ژل ها می توان به توانایی جذب ترشحات زخم، حفظ محیط مرطوب، تبادل گاز، برداشتن زخم پوش از سطح زخم بدون درد و آسانی جابه جایی برای جراحی، اشاره کرد. در این پژوهش، مروری بر کاربرد نانوآب ژل ها در بهبود عملکرد زخم پوش ها، و دارورسانی به همراه بررسی ویژگی پادباکتری، معرفی زخم پوش های تجاری و سازوکارهای بهبود زخم پرداخته شده است.
One of the most common clinical diseases is skin scarring, which is defined as damage to the structure or integrity of skin tissue. Nanohydrogel can help in sustained release of drug by entrapping drug or loading drugs and thus promote wound healing. A hydrogel is a three-dimensional hydrophilic network that is insoluble in water or aqueous solutions and is able to absorb water or other biological fluids that can promote wound healing. Various nano hydrogels have been designed to improve the design of wound dressings, and nano hydrogels are also used in drug release. The advantage of hydrogels over traditional wound dressings is their ability to improve the wound and the wound healing process. Hydrogels meet most criteria for modern wound dressings due to their unique properties. Among the unique properties of nano-hydrogels, we can mention the ability to absorb wound secretions, maintain a moist environment, gas exchange, remove the dressing from the wound surface without pain and replace the dressing for the patient, ease of movement for surgery. In this research, an overview of the use of nano-hydrogels in improving the performance of wound dressings and drug delivery, along with the investigation of antibacterial properties, introduction of commercial wound dressings and wound healing mechanisms, has been discussed.
[1] Norouzi Z, Abdouss M. Electrospun nanofibers
using β-cyclodextrin grafted chitosan
macromolecules loaded with indomethacin as
an innovative drug delivery system. Int J Biol
Macromol. 2023;233:123518. doi: 10.1016/j.
ijbiomac.2023.123518
[2] Shahriari MH, Hadjizadeh A, Abdouss M.
Advances in self-healing hydrogels to repair
tissue defects. Polym Bull. 2023;80:1155-1177.
doi: 10.1007/s00289-022-04133-1
[3] Mohagheghpour E, Farzin L, Ghoorchian A,
Sadjadi S, Abdouss M. Selective detection of
manganese (II) ions based on the fluorescence
turn-on response via histidine functionalized
carbon quantum dots. Spectrochim Acta A Mol
Biomol Spectrosc. 2022;279:121409. doi:10.
1016/j.saa.2022.121409
[4] Shahriari MH, Hadjizadeh A, Abdouss M.
Advances in self-healing hydrogels to repair
tissue defects. Polym Bull. 2023;80:1155-1177.
doi:10.1007/s00289-022-04133-1
[5] Karami MH, Abdouss M, Kalaee MR, Moradi
O, Application of hydrogel nanocomposites in
biotechnology: A review study. Iran polymer
technology, research and development. 2023; In
Press. dor: 20.1001.1.25383345.1402.8.1.3.5
[6] Karami M, Abdouss M, Kalaee M, Moradi O.
Investigating the antibacterial properties of
chitosan Nanocomposites containing metal
nanoparticles for using in wound healings: A
review study. Basparesh, 2023; InPress. doi:
10.22063/basparesh.2023.3285.1648
[7] Karami MH, Abdouss M, Kalaee M, Moradi O.
The application of chitosan-based nanocarriers in
improving the release of the anticancer drug
quercetin: a review study. Nano2023;19(70):21-11. dor: 20.1001.1.24765945.
1402.19.70.2.5
[6] Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W,
Long X. Niosomal nanocarriers for enhanced
skin delivery of quercetin with functions of
anti-tyrosinase and antioxidant. Molecules.
2019;24(12):2322. doi: 10.3390/molecules24
122322
[7] Hatahet T, Morille M, Hommoss A,
Devoisselle JM, Müller RH, Bégu S.
Liposomes, lipid nanocapsules and
smartCrystals®: A comparative study for an
effective quercetin delivery to the skin. Int. J.
Pharm. 2018;542:176-185. doi: 10.1016/ j.ijph
arm.2018.03.019
[8] García-Mediavilla V, Crespo I, Collado PS,
Esteller A, Sánchez-Campos S, Tuñón MJ,
González-Gallego J. The anti-inflammatory
flavones quercetin and kaempferol cause
inhibition of inducible nitric oxide synthase,
cyclooxygenase-2 and reactive C-protein, and
down-regulation of the nuclear factor kappaB
pathway in Chang Liver cells. Eur. J.
Pharmacol. 2007;557:221-229. doi: 10.1016/j
.ejphar.2006.11.014
[9] Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L.
Quercetin suppresses the mobility of breast cancer
by suppressing glycolysis through Akt-mTOR
pathway mediated autophagy induction. Life Sci.
2018;208:123-130. doi: 10.1016/j.lfs.2018.07.027
[10] Scambia G, Ranelletti FO, Panici PB, De
Vincenzo R, Bonanno G, Ferrandina G, Piantelli
M, Bussa S, Rumi C, Cianfriglia M, Mancuso S.
Quercetin potentiates the effect of adriamycin in a
multidrug-resistant MCF-7 human breast-cancer
cell line: P-glycoprotein as a possible target.Cancer Chemother. Pharmacol. 1994;34:459-464.
doi: 10.1007/BF00685655
[11] Hemati M, Haghiralsadat F, Yazdian F, Jafari F,
Moradi A, Malekpour-Dehkordi Z. Development
and characterization of a novel cationic PEGylated
niosome-encapsulated forms of doxorubicin,
quercetin and siRNA for the treatment of cancer by
using combination therapy. Artif. Cells,
Nanomedicine Biotechnol. 2019;47:1295-1311.
doi: 10.1080/21691401.2018.1489271
[12] Sarkar A, Ghosh S, Chowdhury S, Pandey B,
Sil PC. Targeted delivery of quercetin loaded
mesoporous silica nanoparticles to the breast
cancer cells. Biochim. Biophys. Acta - Gen.
Subj. 2016;1860:2065-2075. doi: 10.1016/j.
bbagen.2016.07.001
[13] Maghsoudi A, Yazdian F, Shahmoradi S,
Ghaderi L, Hemati M, Amoabediny G. Curcuminloaded polysaccharide nanoparticles:
Optimization and anticariogenic activity against
streptococcus mutans. Mater. Sci. Eng. C.
2017;75:1259-1267. doi: 10.1016/j.msec.2017
.03.032
[14] Awasthi R, Manchanda S, Das P, Velu V, Malipeddi
H, Pabreja K, Pinto T, Gupta G, Dua K.
Poly(vinylpyrrolidone)- Chapter 9, in: Eng. Biomater.
Drug Deliv. Syst. Beyond Polyethyl. Glycol. Elsevier
Ltd. 2018;255-272. doi: 10.1016/B978-0-08-101750-
0.00009-x
[15] Priya P, Raja A, Raj V. Interpenetrating polymeric
networks of chitosan and egg white with dual
crosslinking agents polyethylene glycol/
polyvinylpyrrolidone as a novel drug carrier.
Cellulose. 2016;23:699-712. doi: 10.1007/s10570-
015-0821-x
[16] Cao L, Wu X, Wang Q, Wang J. Biocompatible
nanocomposite of TiO2 incorporated bi-polymer
for articular cartilage tissue regeneration: A facile
material. J. Photochem. Photobiol. B Biol.
2018;178:440-446. doi: 10.1016/j.jphotobiol.
2017.10.026
[17] Deshmukh K, Ahamed MB, Deshmukh RR,
Khadheer Pasha SK, Sadasivuni KK, Polu AR,
Ponnamma D, Al-Ali AlMaadeed M,
Chidambaram K. Newly developed
biodegradable polymer nanocomposites of
cellulose acetate and Al2O3 nanoparticles with
enhanced dielectric performance for embedded
passive applications. J. Mater. Sci. Mater.
Electron. 2017; 28(1):973-986. doi: 10.1007/s
10854-016-5616-9
[18] Ninan N, Forget A, Shastri VP, Voelcker NH,
Blencowe A. Antibacterial and AntiInflammatory pH-Responsive Tannic AcidCarboxylated Agarose Composite Hydrogels for
Wound Healing. ACS Appl Mater Interfaces.
2016;8:28511-28521. doi: 10.1021/acsami.6b
10491
[19] van Elk M, Murphy BP, Eufrásio-da-Silva T,
O’Reilly DP, Vermonden T, Hennink PWE,
Duffy GP, Ruiz-Hernández E. Nanomedicines for
advanced cancer treatments: Transitioning
towards responsive systems. Int J Pharm.
2016;515:132-164. doi: 10.1016/j.ijpharm.20
16.10.013
[20] Malekimusavi N, Ghaemi A, Masoudi G,
Chogan F, Rashedi H, Yazdian F, Omidi M,
Javadi S, Haghiralsadat BF, Teimouri M, Faal
Hamedani N. Graphene oxide-l-arginine
nanogel A pH-sensitive fluorouracil
nanocarrier. Biotechnol Appl Biochem.
2019;66:772-780. doi: 10.1002/bab.1768
[21] Date P, Tanwar A, Ladage P, Kodam KM,
Ottoor D. Carbon dots-incorporated pHresponsive agarose-PVA hydrogel
nanocomposites for the controlled release of
norfloxacin drug. Polym Bull. 2020;77:5323-
5344. doi: 10.1007/s00289-019-03015-3
[22] Wang K, Wen HF, Yu DG, Yang Y, Zhang
DF. Electrosprayed hydrophilic
nanocomposites coated with shellac for colonspecific delayed drug delivery. Mater Des.
2018;143:248-255. doi: 10.1016/j.matdes.20
18.02.016
[23] Ding Y, Dou C, Chang S, Xie Z, Yu DG, Liu Y,
Shao J. Core-shell eudragit S100 nanofibers
prepared via triaxial electrospinning to provide a
colon-targeted extended drug release. Polymers
(Basel). 2020;12(9):2034. doi: 10.3390/ POLYM1
2092034[24] Larrañeta E, Stewart S, Ervine M, AlKasasbeh R, Donnelly RF. Hydrogels for
كاربرد نانوآب ژلها در بهبود عملكرد زخم پوشها و دارورساني
نشريه پژوهشهاي كاربردي در شيمي (JARC (سال هفدهم، شماره ،2 تابستان 1402
17
hydrophobic drug delivery. Classification,
synthesis and applications. J Funct Biomater.
2018;9(1):13. doi: 10.3390/jfb9010013
[25] Argenta DF, dos Santos TC, Campos AM,
Caon T. Hydrogel Nanocomposite SystemsChapter 3. In: Nanocarriers Drug Deliv Nanosci
Nanotechnol Drug Deliv. London:
SciencDirect: Netherlands; 2019. doi: 10.1016/
b978-0-12-814033-8.00003-5
[26] Kong L, Mu Z, Yu Y, Zhang L, Hu J.
Polyethyleneimine-stabilized hydroxyapatite
nanoparticles modified with hyaluronic acid for
targeted drug delivery. RSC Adv.
2016;6:101790-101799. doi: 10.1039/c6ra193
51j
[27] Fan L, Zhang J, Wang A. In situ generation of
sodium alginate/hydroxyapatite/halloysite
nanotubes nanocomposite hydrogel beads as
drug-controlled release matrices. J Mater Chem
B. 2013;1:6261-6270. doi: 10.1039/c3tb2097
1g
[28] Zhao H, Wu C, Gao D, Chen S, Zhu Y, Sun J,
Luo H, Yu K, Fan H, Zhang X. Antitumor
effect by hydroxyapatite nanospheres:
Activation of mitochondria-dependent
apoptosis and negative regulation of
phosphatidylinositol-3-kinase/protein kinase B
pathway. ACS Nano. 2018;12:7838-7854.
doi:10.1021/acsnano.8b01996
[29] Rawat AT, Mahavar HK. Study of electrical
properties of polyvinylpyrrolidone/
polyacrylamide blend thin films. Bull Mater
Sci. 2014;37:273-279. doi: 10.1007/s12034-01
4-0639-4
[30] Zucca P, Fernandez-Lafuente R, Sanjust E.
Agarose and its derivatives as supports for
enzyme immobilization. Molecules. 2016;21:1-
25. doi: 10.3390/molecules21111577
[31] Vasile C, Pamfil D, Stoleru E, Baican M. New
Developments in Medical Applications of
Hybrid Hydrogels Containing Natural
Polymers. Molecules. 2020;25:1539. doi:10.
3390/molecules25071539
[32] Gun'ko VM, Savina IN, Mikhalovsky SV.
Properties of Water Bound in Hydrogels. Gels.
2017;3:1-30. doi: 10.3390/gels3030037
[33] Wang H, Heilshorn SC. Adaptable hydrogel
networks with reversible linkages for tissue
engineering. Adv Mater. 2015;27:3717-3736.
doi: 10.1002/adma.201501051
[34] Dabiri G, Damstetter E, Phillips T. Choosing
a Wound Dressing Based on Common Wound
Characteristics. Adv Wound Care. 2016;5:32-
41. doi: 10.1089/wound.2014.0603
[35] Du X, Zhou J, Shi J, Xu B. Supramolecular
Hydrogelators and Hydrogels: From Soft
Matter to Molecular Biomaterials. Chem Rev.
2015;115:13165-13307. doi: 10.1021/acs.che
mre v.5b00112
[36] Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba
MA, Alghamdi NA, Wageh S, Ramesh K,
Ramesh S. Fundamental Concepts of Hydrogels:
Synthesis, Properties,s, and Their Applications.
Polymers. 2020;12:2702. doi: 10.3390/polym
12112702
[37] Rebers L, Reichsöllner R, Regett S, Tovar G,
Borchers K, Baudis S, Southan A.
Differentiation of physical and chemical crosslinking in gelatin methacryloyl hydrogels. Sci
Rep. 2021;11:3256. doi: 10.1038/s41598-021-
82614-2
[38] Morello G, Polini A, Scalera F, Rizzo R, Gigli
G, Gervaso F. Preparation and characterization
of salt-mediated injectable thermosensitive
chitosan/pectin hydrogels for cell embedding
and culturing. Polymers. 2021;13:2674.
doi: 10.3390/polym13162674
[39] Unger F, Wittmar M, Morell F, Kissel T.
Branched polyesters based on poly [vinyl-3-
(dialkylamino)alkylcarbamate-co-vinyl acetateco-vinyl alcohol]-graft-poly (d,l-lactide-coglycolide): effects of polymer structure on in
vitro degradation behaviour. Biomaterials.
2008;29(13):2007-2014. doi: 10.1016/j.biomat
erials.2007.12.027
[40] Echalier C, Laurine V, Martinez J, Mehdi A,
Gilles S. Chemical cross-linking methods for
cell encapsulation in hydrogels. Materials
Today Communications. 2019;20:100536. doi:
10.1016/j.mtcomm.2019.100536
[41] Chang NS, Lin R, Sze CI, Aqeilan RI.
Editorial: WW Domain proteins in signaling,