تأثیر محلولپاشی سالیسیلیک اسید بر خصوصیات مرفولوژیک و فیزیولوژیک لوبیا (Phaseolus vulgaris) در شرایط تنش نیکل
محورهای موضوعی : تنش
فرشاد قوشچی
1
,
حمید رضا توحیدی مقدم
2
,
علیرضا صفاهانی
3
*
1 - گروه اگروتکنولوژی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی،ورامین، ایران
2 - گروه اگروتکنولوژی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی،ورامین، ایران
3 - بخش تحقیقات گياهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران
کلید واژه: لوبیا, سالیسیلیک اسید, کلروفیل, گیاه پالایی, نیکل.,
چکیده مقاله :
این تحقیق به منظور بررسی اثر محلولپاشی سالیسیلیک اسید بر خصوصیات مرفولوژیک و فیزیولوژیک لوبیا در شرایط تنش نیکل در دانشکده کشاورزي دانشگاه آزاد اسلامی واحد ورامین- پیشوا در سال 98-1397 بصورت گلدانی اجرا گردید. این بررسی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار انجام گرفت. فاکتورهای اعمال شده در این پژوهش شامل نیکل از منبع کلرید نیکل در چهار سطح صفر (شاهد)، 50، 100 و 150 میلیگرم در کیلوگرم خاک و محلولپاشی سالیسیلیک اسید در سه سطح صفر (شاهد)، 5/0 و 1 میلیمولار در لیتر بود. نتایج به دست آمده نشان داد که نیکل باعث کاهش معنی دار ارتفاع بوته، طول ریشه، وزن خشک ریشه، وزن خشک بوته، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن صد دانه، کلروفیل، محتوای نسبی آب برگ و افزایش پرولین و جذب نیکل در ریشه، اندام هوایی و دانه شد. بیشترین تأثیر منفی نیکل در تیمار 150 میلیگرم در کیلوگرم خاک نیکل به دست آمد. مشاهده شد که کاربرد سالیسیلیک اسید توانست موجب افزایش ارتفاع بوته، طول ریشه، وزن خشک ریشه، وزن خشک بوته، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن صد دانه، کلروفیل، محتوای نسبی آب برگ، پرولین، جذب نیکل در ریشه و کاهش جذب نیکل در اندام هوایی و دانه گردد. بطور کلی بدون در نظر گرفتن میزان نیکل، بیشترین تأثیر مثبت در کاربرد 1 میلیمولار در لیتر سالیسیلیک اسید حاصل شد. نتایج به دست آمده اثرات مثبت سالیسیلیک اسید به خصوص در شرایط حضور نیکل و کاهش اثرات منفی ناشی از آن تنش در لوبیا را نشان داد. بنابراین کاربرد سالیسیلیک اسید برای تعدیل بخشیدن اثرات منفی ناشی ازتنش فلز سنگین نیکل پیشنهاد میگردد.
In order to investigate the effect of salicylic acid foliar application on the morphological and physiological characteristics of beans under nickel stress conditions, it was carried out in the Faculty of Agriculture of Islamic Azad University, Varamin-Pishwa Branch in 2017-2018. This research was done as a factorial in the form of a completely randomized design with three replications. The factors applied in this research include nickel from the source of nickel chloride at four levels of zero (control), 50, 100 and 150 mg/kg of soil and spraying salicylic acid at three levels of zero (control), 0.5 and 1. It was millimolar per liter. The obtained results showed that nickel decreased plant height, root length, root dry weight, plant dry weight, number of pods per plant, number of seeds per pod, hundred seed weight, chlorophyll, relative leaf water content and increased proline and nickel absorption. In root, shoot and seed. The greatest effect of nickel was obtained in the treatment of 150 mg/kg of nickel soil. It was observed that the application of salicylic acid could increase plant height, root length, dry weight of roots, dry weight of plants, number of pods per plant, number of seeds per pod, weight of one hundred seeds, chlorophyll, relative content of leaf water, proline, absorption of nickel in roots. And the absorption of nickel in aerial parts and seeds was reduced, in general, the most positive effect was obtained in the application of 1 mmol/l salicylic acid. The obtained results showed the positive effects of salicylic acid, especially in the presence of nickel, and the reduction of the negative effects caused by that stress in beans. Therefore, the use of salicylic acid is suggested to moderate the negative effects caused by heavy nickel metal stress.
Ahmadi, K., Gholizadeh, H., Ebadzadeh, H., Hoseinpour, R., Addeshah, H., Kazemian, A. and Rafiee, M. (2016). Agriculture Statistics. Ministry of Jihad e Agriculture of Iran. Tehran, Iran.Vol:1, 125p.
Ali, M.A., Ashraf, M. and Athar, H.R. (2009). Influence of nickel stress on growth and some important physiological/ biochemical attributes in some diverse canola (Brassica napus L.) cultivars. Hazardous Materials, 172: 964–969.
Amirinejad, A. A., Bahrami, M., and Ghobadi, M. (2018). Alkalinity stress, salicylic acid and soil type interactions on growth parameters in Mung bean (Vigna radiate). Iranian Journal of Soil and Water Research, 49(5), 1083-1093.
Arnon, I. (1972). Crop production in dry regions. Vol. II: Systematic treatments of the principal crops. Plant Science Monograph. Leonard Hill Books, London, 683 pp.
Bakry, B. A., El-Hariri, D. M., Mervat, S. S. and El-Bassiouny, H. M. S. (2012). Drought stress mitigation by foliar application of salicylic acid in two linseed varieties grown under newly reclaimed sandy soil. Journal of applied sciences research, 7: 3503-3514.
Benaroya, R.O., Tzin, V., Tel-or, E. and Zamski, E. (2004). Lead accumulation in theaquatic fern Azolla filiculoides. Plant Physiology and Biochemistry, 42: 639-645.
Bhardwaj, J., and Yadav, S.K. (2012). Comparative study on biochemical parameters and antioxidant enzymes in drought tolerant and a sensitive variety of Horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology, 7(1): 17-29.
Burken, J., Vroblesky, D. and Balouet, J. C. (2011). Phytoforensics, Dendrochemistry and Phytoscreening: New Green Tools for Delineating Contaminants from Past and Present. Environmental Science and Technology, 45(15), 6218-6226.
Cabello-Conejo, M., Centofanti, T., Kidd, P., Prieto-Fernández, Á. and Chaney, R. (2013). Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species. International Journal of Phytoremediation, 15: 365–75.
Chen, C., Huang, D. and Liu, J. (2009). Functions and toxicity of Nickel in plants: advances and future prospects. – Clean Journal, 37: 304-313.
Cheng, S and Huang, C. (2006). Influence of cadmium on growth of root vegetable and ccumulation of cadmium in the edible root. International Journal of Applied Science and Engineering, 3: 243-252.
Eraslan, F., Inal, A., Gunes, A., and Alpaslan, M. (2007). Impact of exogenous salicylic acid on growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113: 120–128.
Fathi, GH., Esmaeilpour, B. and Jalilvan, P. (2015). Plant growth regulator (principles and application). Mashhad Jahadeh Daneshgahi Press. )In Persian(
Fabriki-Ourang, S., and Shahabzadeh, H. (2019). The effect of abiotic elicitors on antioxidants and phytochemical traits of celandine (Chelidonium majus) under drought stress. Iranian Journal of Field Crop Science, 50(1), 139-150.
Fuentes, D., Disante, K.B., Valdecantos, A., Cortina, J., Vallejo, V.R. (2006). Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three mediterranean forest soils. Environmental Pollution, 145 (1): 316-323.
Ghafari, H., Tadayon, M. R., and Razmjoo, J. (2018). The role of salicylic acid and proline treatment on induction of antioxidant enzyme activities and salt tolerance responses of soybean (Glycine max L.). Environmental Stresses in Crop Sciences, 11(3), 691-705.
Ghasemi, Z., and Shahabi, A. A., (2010). Effect of cadmium on the phisioligical indices, growth charactristics and nutrient element concentration in tomato (Lycopersicon esculentum mill.) in soilles culture, Ms thesis, Isfahan university of technology. (In Persian).
Hamada, A. M. (2000). Amelioration of drought stress by ascorbic acid, thiamin and aspirin in wheat plants. Indian Journal of Plant Physiology, 5: 358-364.
Hasanvand, A., Fahmideh, L. and Bidarnamani, F. 2022. Evaluating the foliar application of salicylic acid and iron nano chelate on some biochemical and morpho-physiological properties of Aromatic violet (Viola odorata L.). Journal of Plant Environmental Physiology, 65(2): 141-162.
Hayat, Q., Hayata, S. H., Irfan, M., and Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment review. Environmental and Experimental Botany, 68:14–25.
Heckathorn, S. A., Mueller, J. K., LaGuidice, S., Zhu, B., Barrett, T., Blair, B. and Dong, A. (2004). Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. American Journal of Botany, 91: 1312-1318.
Heydarian, A., Tohidi Moghadam, H. R., and Kasraie, P. (2017). Effect of Glomus intraradices fungus on quantitative, qualitative traits of wheat under nickel stress. Iranian Journal of Field Crop Science, 48(3), 685-693.
Khatib, M., Rashed mohasel, M.H., Ganjali, A. and Lahooti, M. (2008). The Effect of different concentration of Ni on morphological properies of Petroselenium crispum, Iranian Journal of Crop Research, 6(2): 295-302.
Korkmaz, A., Uzunlu, M. and Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologia Plantarum, 29, 503-508.
Liamas, A., Ullrich, C.I. and Sanz, A. (2008). Ni2+ toxicity in rice: Effect on membrane functionality and plant water content. – Plant Physiology and Biochemistry, 46: 905-910.
Lozak, A. and Soltyk, K. (2002). Determination of selected trace elements in herbs and their influence. Science Environment, 289:33-40.
Messina, V. (2014). Nutritional and health benefits of dried beans. American Society for Nutrition. American Journal of Clinical Nutrition, 437–442.
Muhammad, Z. and Hussain, F. (2010). Vegetative growth performance of five medicinal plants under NaCl salt stress. Pakistan Journal of Botany, 42(1): 303-316.
Neisi, A., Vosoughi, M., Mohammadi, M. J., Mohammadi, B., Naeimabadi, A., and Hashemzadeh, B. (2014). Phytoremediation of by Helianthus plant. Journal of Torbat Heydariyeh University of Medical Sciences. 55-65.
Noorani Azad, H. and Kafilzadeh, F. (2011). The effect of cadmium toxicity on growth, Nutrient deficiency and physiological disease of 1970 lowland rice in Ceylon. Soil Science and Plant Nutrition, 16: 11-23.
Noreen, S., Ashraf, M., Hussain, M. and Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plant. Pakistan Journal of Botany, 41(1), 473.
Norouzi, M., Sajedi, N. A. and Gomarian, M. G. (2018). Effects of salicylic acid and selenium at growth stages on yield and yield components of chick pea (Cicer arietinum L.) under dryland farming condition. Environmental Stresses in Crop Sciences, 11(3), 579-589.
Pakdaman, N., Ghaderian, S. M., Ghasemi, R. and Asemaneh, T. 2013. Effects of calcium/magnesium quotients and nickel in the growth medium on growth and nickel accumulation in Pistacia atlantica. Journal of Plant Nutrition, 36, 1708-1718.
Peralta-Videa, J. R., Gardea-Torresdey, J. L., Gomez, E., Tiemann, K. J., Parsons, J. G., Carrillo, G. (2002). Effect of mixed cadmium copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119: 291–301.
Pourakbar, L. and Ebrahimzade, N. (2014). Growth and physiological responses of Zea mays L. to Cu and Ni stress. Applied Field Crops Research, 27(103), 147-159.
Prasad M.N.V. and Freitas, H. (2003). Metal hyper accumulation in Plants-Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotetechnol, 6: 275-321.
Rahimi Moghaddam, S. (2018). Phytoremediation ability of nickel-contaminated soil using Sunflower (Helianthus annuus L.) and Sorghum (Sorghum bicolor L.). Journal of Soil Management and Sustainable Production, 6(4), 131-142.
Ramezannezhad, R., Lahouti, N. and Ganjali, A. (2013). Effect of salicylic acid on physiological and biochemical parameters on resistant and sensitive chickpea (Cicer arietinum L.) genotypes under drought stress. Journal of plant Ecophysiology, 5(12), 24-36. )In Persian(
Rashid Shomali, A., Khodaverdiloo, H. and Samadi, A. (2012). Accumulation and tolerance to soil cadmium by Pennisetum glausum,Chnopodium album,Portulaca oleracea and Descurainia Sophia. Iranian Journal of Soil Management and Sustainable Agriculture 2(1): 45-62.
Schonfeld, M.A., Johnson, R.C., Carver, B.F. and Mornhinweg, D.W. (1988). Water relation in winter wheat as drought resistance indicators. Crop Science, 28: 526-531.
Seregin, I.V. and Kozhevnikova, A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53: 257-277.
Seyed Hajizadeh, H. and Aliloo, A.A. (2013). The effectiveness of pre-harvest salicylic acid application on physiological traits in Lilium (Lilium longiflorum L.) cut flower. International Journal of Scientific Research in Environmental Sciences, 1(12): 344-350.
Sheng Zhou, Z., Guo, K., Abdou Elbaz, A. and Min Yang, Z. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany, 65(1): 27-34.
Singh, B. and Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Journal of Plant Growth Regulation, 39: 137–141.
Singh, H.P. and Kaur, G. (2012). Growth, photosynthetic activity and oxidative stress in wheat after exposure of lead to Triticum aestivum soil. Journal of Environmental Biology, 33:265-269.
Tagharobiyan, M., Poozesh, V., Khorshidi, M. (2016). Influence of nickel on the indices of growth and content of photosynthetic pigments, protein, soluble sugar, proline and nickel accumulation in coriander. Applied Research of Plant Ecophysiology, (2) :59-74
Vicente, M.R. and Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62: 3321-3338.
Wang, S. T., He, X. J. and An, R. D. (2010). Responses of growth and antioxidant metabolism to nickel toxicity in Luffa cylindrica seedlings. Animal and Plant Sciences, 7, 2: 810- 821.
Wo-Niak, K. and Basika, J. (2003). Free radicals-mediated induction of oxidized DNA-bases and DNA protein cross-links by nickel chloride. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 514: 233-243.
Yusuf, M., Fariduddin, Q., Hayat, S. and Ahmad, A. (2011). Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bulletin of Environmental Contamination and Toxicology, 86:1–17.