ارائه ی رویکرد مبتنی بر انتگرال چوکوئت در زنجیره تأمین دارویی
محورهای موضوعی : مدیریت صنعتیMohammad Reza Gholamian 1 * , Morteza Momeni Shahraki 2 , Syed i Ershad Sakak 3
1 - Assistant Professor in Industrial Management, Iran University of Science and Technology, Tehran, Iran
2 - M.A in Industrial Management, Iran University of Science and Technology, Tehran, Iran
3 - M.A in Industrial Management, Iran University of Science and Technology, Tehran, Iran
کلید واژه: decision making, تصمیم گیری, Analytic network process (ANP), زنجیره تأمین دارویی, انتگرال چوکوئت, فرآیند شبکه تحلیلی, Pharmaceutical supply chain, Choquet Integral,
چکیده مقاله :
حوزه بهداشت و درمان در هر کشوری از پر اهمیت ترین حوزه ها می باشد و زنجیره تأمین این حوزه دارای اهمیتی استراتژیک است؛ چرا که هزینه های زنجیره تأمین تأثیر مستقیمی بر هزینه های اقلام دارویی دارد. از سوی دیگر این حوزه باید قادر باشد تا با بیشترین سرعت و دقت، نیاز های دارویی جامعه را پوشش دهد و بدین منظور ردیابی زنجیره تأمین دارو، امری ضروری به نظر می رسد. از این رو معیارهای مدیریت تولید و لجستیک، توانایی مالی، مدیریت دانش و تکنولوژی، توانایی بازاریابی و رقابت بین سازمانی و صنعتی در این حوزه مورد توجه قرار گرفته است. به علاوه از آن جا که فاکتورهای غیر قابل پیش بینی زیادی در معیارهای فوق وجود دارد، باید از یک روش تصمیم گیری ترکیبی استفاده شود که همه معیارها، فاکتورها و تراکنش بین آنها را در نظر بگیرد.در این پژوهش سعی شده است تا با بررسی زنجیره تأمین دارویی و با توجه به اهمیت ردیابی دارو در آن، بهترین سیستم ردیابی( از بین سه سیستم سنتی، بارکد و برچسب هایRFID) انتخاب شود. بدین منظور از یک روش ابتکاری استفاده شده است که از ترکیب دو روش شناخته شده تصمیم گیری یعنی انتگرال چوکوئت و فرآیند شبکه تحلیلی به دست می آید. ضمن آنکه برای به دست آوردن گراف نتایج از روش پرومثه استفاده شده است.
Health area in any country is one of the most important areas and supply chain in this area is of a strategic importance; because of directly the impact of supply chain costs into pharmaceutics costs. On the other hand, the area should be able to respond the society’s pharmaceutical needs with the greatest speed and efficiency and hence pharmaceutical supply chain tracking is quite necessary. So, the criteria such as logistics and manufacturing management, financial ability, technology and knowledge management, marketing ability and organizational competitiveness are attended. In addition, since there are many unpredictable factors in above criteria, there must be a complicate decision-making method that takes into account all criteria and factors along with transactions between them. In this research, after reviewing the pharmaceutical supply chain and with attention to the importance of drug tracking the best tracking system among the three well-known systems (traditional system, barcode, RFID) was selected. To do this, an innovative method was developed by the combination of two well-known decision-making methods, Choquet Integral and ANP. Meanwhile, PROMETHEE method was used to illustrate the outranking graph of the outcomes.
1- Alshawi, S., Saez-Pujol, I., & Irani, Z. (2003). Data warehousing in decision support for pharmaceutical R&D supply chain. International Journal of Information Management, 23, 259–268.
2- Berrah, L., Mauris, G., & Montmain, J. (2008). Monitoring the improvement of an overall industrial performance based on a Choquet integral aggregation. Omega, 36(3), 340 –351.
3- Bouri, A., Martel, J. M., & Chabchoub, H. (2002). A multi-criterion approach for selecting attractive portfolio. Journal of Multi-Criteria Decision Analysis, 11(4-5), 269–277.
4- Cavusgil, S.T., Yeoh, P.L., & Mitri, M. (1995). Selecting foreign distributors: an expert systems approach. Industrial Marketing Management, 24 (4), 297–304.
5- Choi, T.Y., &Hartley, J.L., (1996). An exploration of supplier selection practices across the supply chain. Journal of Operations Management, 14 (4), 333–343.
6- Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, 131–295.
7- Choy, K.L., Lee, W.B., &Lo, V. (2003). Design of a case based intelligent supplier relationship management system- the integration of supplier rating system and product coding system. Expert Systems with Applications, 25(1), 87–100.
8- Chung, S.H., Lee, A.H.I., & Pearn, W.L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International Journal of Production Economics, 96 (1), 15–36.
9- Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis -State of the Art Surveys, Springer's International Series.
10- Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92(2), 167-189.
11- Grabisch, M. (2003)Modeling data by the Choquet integral- LIP6, Universit_e de Paris VI, Paris, France, studies in fuzziness and soft computing.
12- Hajidimitriou, Y.A., &Georgiou, A.C. (2002). A goal programming model for partner selection decisions in international joint ventures. European Journal of Operational Research, 138 (3), 649–662.
13- Hajkowicz, S., & Higgins, A. (2008). A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, 184(1), 255-265.
14- Halouani, N., & Chabchoub, H., Martel J.-M. (2009). PROMETHEE-MD-2T method for project selection. European Journal of Operational Research, 195(3), 841-849.
15- Harvey, M.G., & Lusch, R.F. (1995). A systematic assessment of potential international strategic alliance partners. International Business Review, 4 (2), 195–212.
16- Lin, C.R., &Chen, H.S. (2004). A fuzzy strategic alliance selection framework for supply chain partnering under limited evaluation resources. Computers in Industry, 55 (2), 159–179.
17- Lorange, P., Roos, J., &Bronn, P.S. (1992). Building successful strategic alliances. Long Range Planning, 25 (6), 10–18.
18- Luo, Y. (1998). Joint venture success in China: how should we select a good partner? Journal of World Business, 33 (2), 145–166.
19- Marichal, J-L. (2000). On Sugeno integral as an aggregation function. Fuzzy Sets and Systems, 114(3), 347-365.
20- Marichal, J-L., & Roubens, M. (2000). Determination of weights of interacting criteria from a reference set. European Journal of Operational Research, 124(3), 641-650.
21- Meyer, P., &Roubens, M. (2006). On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support . Fuzzy Sets and Systems, 157 (7), 927-938.
22- Mikhailov, L. (2002). Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega, 30 (5), 393–401.
23- Murofushi, T. (1992)A technique for reading fuzzy measures (I): the Shapley value with respect to a fuzzy measure.2nd Fuzzy Workshop (Nagaoka, Japan), Oct. 1992, Pages 39–48.
24- Murofushi, T., &Soneda, S. (1993). Techniques for reading fuzzy measures (III): interactionindex. 9th Fuzzy System Symposium(Sapporo, Japan),693–696.
25- Narasimhan, R., Talluri, S., & Mahapatra, S.K., (2006). Multiproduct, multi criteria model for supplier selection with product life-cycle considerations. Decision Sciences, 37 (4), 577–603.
26- Okunade, A.A., Karakus, M.C., & Okeke, C. (2004). Determinants of health expenditure growth of the OECD countries: Jackknife resampling plan estimates. Health Care Management Science, 7(3), 173–83.
27- Saaty, TL. (1996). Decision making with dependence and feedback: The analytic network process. RWS Publications, completely revised and published 2001.
28- Sarkar, A., & Mohapatra, P.K.J., (2006). Evaluation of supplier capability and performance: a method for supply base reduction. Journal of Purchasing & Supply Management, 12 (3), 148–163.
29- Schapranow, M-P., Zeier, A., & Plattner, H. (2011). A Formal Model for Enabling RFID in Pharmaceutical Supply Chains. Proceedings of the 44th Hawaii International Conference on System Sciences, Jan. 2011, Pages 1 - 10.
30- Schmeidler, D. (1986).Integral representation without additivity. Proc. of the Amer. Math.Soc., 97(2), 255–261.
31- Shah, N. (2004). Pharmaceutical supply chains: key issues and strategies for optimization. Computers and Chemical Engineering, 28, 929–941.
32- Shyur H-J. (2006).COTS evaluation using modified TOPSIS and ANP. Applied Mathematics and Computation, 177, 251–259.
33- Suh, D-C., Lacy, C.R., Barone, J.A., Moylan, D., & Kostis, J.B. (1999). Factors contributing to trends in prescription drug expenditures. Clinical Therapeutics, 21(7), 1241–53.
34- Talluri, S., Baker, R.C., &Sarkis, J. (1999). A framework for designing efficient value chain networks. International Journal of Production Economics, 62(1), 133–144.
35- Tseng, M-L., Chiang, J.H., &Lan, L.W. (2009) Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral. Computers & Industrial Engineering, 57, 330–340.
36- Vego, G., Kučar-Dragičević, S., & Koprivanac, N. (2008). Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia. Waste Management, 28(11), 2192-2201.
37- Wey, W-M., &Wu, K-Y. (2007). Using ANP priorities with goal programming in resource allocation in transportation. Mathematical and Computer Modelling, 46 (7-8), 985-1000.
38- Wu, C., &Barnes, D. (2010). Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimization approach. Int. J. Production Economics, 125(2), 284-293.
39- Yan, H., Yu, Z.X., &Cheng, T.C.E., (2003). A strategic model for supply chain design with logical constraints: formulation and solution. Computers & Operations Research, 30 (14), 2135–2155.
40- Yigin, I.H., Taskin, H., & Cedimoglu, I.H., Topal, B.(2007). Supplier selection: an expert system approach. Production Planning and Control, 18 (1), 16–24.
41- Yu, X., Li, C., Shi, Y., &Yu, M. (2010). Pharmaceutical supply chain in China: Current issues and implications for health system reform. Health Policy, 97, 8–15.
42- Zhang, W., Chen, W., & Wang, Z. (2009). On the uniqueness of the expression for the Choquet integral with linear core in classification. IEEE International Conference, Aug. 2009, Pages 769 - 774.
_||_