شناسایی و رتبه بندی معیارهای تاثیرگذار بريكپارچه سازی نگهداری و تعمیرات و برنامه ریزی تولید در سيستم كارگاهي باز
محورهای موضوعی : مدیریت صنعتی
سمیرا کریمی سفیددشتی
1
,
غلامرضا اسماعیلیان
2
,
مجيد وزيري سرشك
3
*
1 - گروه مهندسی صنایع، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
2 - گروه مهندسی صنایع دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران
3 - گروه مهندسي صنایع، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ايران
کلید واژه: نگهداری و تعمیرات, سیستم کارگاهی باز, رویکرد دیمتل, رویکرد اولوتبندی ترتیبی,
چکیده مقاله :
ﺑﺮﻧﺎﻣﻪرﯾﺰي ﺗﻮﻟﯿﺪ و زﻣﺎنﺑﻨﺪي ﻧﻘﺶ ﺣﯿﺎﺗﯽ در اﻓﺰاﯾﺶ اﺛﺮﺑﺨﺸﯽ ﮐﺎرﺧﺎﻧﺠﺎت اﯾﻔﺎ ﻣﯽﮐﻨﻨﺪ. در ﮐﺎرﺑﺮدﻫﺎي واﻗﻌﯽ ﻣﺎﻧﻨﺪ زﻣﺎﻧﺒﻨﺪي ﻓﻌﺎﻟﯿﺖﻫﺎي ﻧﺖ، ﺗﻤﯿﺰ ﮐﺎري، ﺗﻮﻟﯿﺪ در صنایع و ﻓﻌﺎﻟﯿﺖﻫﺎي ﻣﺮﺑﻮط ﺑﻪ تولید و ﻏﯿﺮه، ﻫﺮ ﮔﻮﻧﻪ ﺗﺄﺧﯿﺮ در اﻧﺠﺎم ﯾﮏ ﮐﺎر، ﻣﻨﺠﺮ ﺑﻪ ﻧﯿﺎز ﺑﻪ ﺗﻼش ﺑﯿﺸﺘﺮ ﺑﺮاي اﻧﺠﺎم آن ﮐﺎر ﺧﻮاﻫﺪ ﺷﺪ. اﯾﻦ ﭘﺪﯾﺪه در ﻣﺮور ادﺑﯿﺎت ﺑﻪ ﻋﻨﻮان اﺛﺮ زوال واﺑﺴﺘﻪ ﺑﻪ زﻣﺎن ﺷﻨﺎﺧﺘﻪ ﺷﺪه اﺳﺖ. ﺑﺪﯾﻦ ﺗﺮﺗﯿﺐ نقش نگهداری و تعمیرات در برنامهریزی تولید به ویژه سیستم کارگاهی باز مساله بسیار حایز اهمیت میباشد. با این استدلال و با هدف پر کردن شکاف پژوهش در زمینه کمیابی دسترسی به پژوهشی که شناسایی عوامل تاثیرگذار بر یکپارچهسازی فعالیتهای نگهداری و تعمیرات را در نظر گرفته باشند، پژوهش فعلی این مفهوم را مورد توجه قرار داده و آن را در سیستم تولید کارگاهی باز در نظر میگیرد. در این پژوهش رویکرد ترکیبی تصمیمگیری چندمعیاره تحت عنوان دیمتل-رویکرد اولویتبندی ترتیبی در نظر گرفته میشود. رویکرد دیمتل ضمن غربالگری معیارهای گردآوری شده که به صورت کدهای C01، C02، C03، ...، C20 نمادگذاری شدند، برای شناسایی روابط علت و معلولی میان آنها استفاده میشود و رویکرد جدید اولویتبندی ترتیبی برای رتبهبندی آنها مورد استفاده قرار میگیرد. بر اساس نتایج بدست آمده، بعد از غربالگری معیارها به تعداد 10 معیار با رویکرد دیمتل، بر اساس خروجی رویکرد اولویتبندی ترتیبی مشخص میباشد که معیارهای ابزار، مواد، قطعات یدکی و سایر تجهیزات موجود، تعیین هزینههای عملیاتی تولید و تعیین هزینههای تعمیر و نگهداری به ترتیب در جایگاه های اول تا سوم از نظر اهمیت قرار گرفتند.
Production planning and scheduling are critical for optimizing the performance of manufacturing systems. In practical industrial contexts—including the scheduling of maintenance, cleaning, production runs, and related tasks—delays in task execution often necessitate a subsequent increase in the effort or resources required for completion. This phenomenon is formally recognized in the literature as time-dependent deterioration. Consequently, the integration of maintenance planning with production scheduling, particularly within open job shop environments, represents a significant and complex operational challenge. Addressing the identified research gap, namely the limited investigation into the critical factors influencing this integration, this study examines the phenomenon within an open job shop production system. A hybrid multi-criteria decision-making (MCDM) framework, integrating the Decision-Making Trial and Evaluation Laboratory (DEMATEL) and the Ordinal Priority Approach (OPA), is employed. The DEMATEL method is first applied to analyze the interrelationships among an initial set of 20 criteria (coded C01–C20) and to filter the most influential ones. The subsequent Ordinal Priority Approach is then used to definitively rank these screened criteria. The analysis yielded two primary results. First, the DEMATEL screening process refined the initial set of 20 criteria down to 10 key factors. Second, the OPA ranking revealed the following three criteria as the most critical for integration: the availability of tools, materials, spare parts, and equipment (C04); the determination of operational production costs (C02); and the determination of maintenance and repair costs (C01).
Amiri, S., & Honarvar, M. (2018). Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy, 163, 1093-1114. https://doi.org/10.1016/j.energy.2018.08.046
Ataei, Y., Mahmoudi, A., Feylizadeh, M. R., & Li, D. F. (2020). Ordinal priority approach (OPA) in multiple attribute decision-making. Applied Soft Computing, 86, 105893. https://doi.org/10.1016/j.asoc.2019.105893
Avakh Darestani, S., Palizban, T., & Imannezhad, R. (2022). Maintenance strategy selection: a combined goal programming approach and BWM-TOPSIS for paper production industry. Journal of Quality in Maintenance Engineering, 28(1), 14-36. 10.1108/JQME-03-2019-0022
Azadeh, A., & Jebreili, S. (2013). An Integrated Fuzzy Algorithm for Job Shop Layout Optimization: The Case of Maintenance Workshop Process. In 2nd International Conference on Mechanical, Automobile and Robotics Engineering (pp. 17-18).
Berthaut, F., Gharbi, A., & Dhouib, K. (2011). Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell. Omega, 39(6), 642-654. https://doi.org/10.1016/j.omega.2011.01.006
Bouslah, B., Gharbi, A., & Pellerin, R. (2016). Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint. Omega, 61, 110-126. https://doi.org/10.1016/j.omega.2015.07.012
dos Santos, C. F., Loures, E. D. F. R., & Santos, E. A. P. (2024). A smart framework to perform a criticality analysis in industrial maintenance using combined MCDM methods and process mining techniques. The International Journal of Advanced Manufacturing Technology, 1-17. https://doi.org/10.1007/s00170-024-13193-8
Ertogral, K., & Öztürk, F. S. (2019). An integrated production scheduling and workforce capacity planning model for the maintenance and repair operations in airline industry. Computers & Industrial Engineering, 127, 832-840. https://doi.org/10.1016/j.cie.2018.11.022
Farwaha, H. S., Singh, S., Ranjan, N., Grewal, J. S., & Pandey, S. (2025). MCDM methods for boom placer maintenance strategy design: a case study in a construction sector. Safety in Extreme Environments, 7(1), 2. https://doi.org/10.1007/s42797-024-00116-9
Fitouhi, M. C., & Nourelfath, M. (2014). Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems. Reliability Engineering & System Safety, 121, 175-186. https://doi.org/10.1016/j.ress.2013.07.009.
Goli, A., Tirkolaee, E. B., & Aydın, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Transactions on Fuzzy Systems, 29(12), 3686-3695. 10.1109/TFUZZ.2021.3053838.
Jandali, D., & Sweis, R. (2018). Assessment of factors affecting maintenance management of hospital buildings in Jordan. Journal of Quality in Maintenance Engineering, 24(1), 37-60. 10.1108/JQME-12-2016-0074
Jasiulewicz-Kaczmarek, M. (2018). Identification of maintenance factors influencing the development of sustainable production processes–a pilot study. In IOP Conference Series: Materials Science and Engineering (Vol. 400, p. 062014). IOP Publishing. DOI 10.1088/1757-899X/400/6/062014
Khaksari, P. Ghandi Bidgoli, S. (1402). Mathematical modeling and solving the scheduling problem of workshop flow without waiting, considering release time and preventive maintenance activities, Industrial Engineering Researches in Production Systems, Volume 11(23), pp. 39-55. DOI: https://dx.doi.org/10.22084/IER.2024.5564
Kim, J., & Gershwin, S. B. (2008). Analysis of long flow lines with quality and operational failures. IIE transactions, 40(3), 284-296. https://doi.org/10.1080/07408170701558607.
Lin, J., Pulido, J., & Asplund, M. (2015). Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study. Reliability Engineering & System Safety, 134, 143-156. https://doi.org/10.1016/j.ress.2014.10.011
Liu, J., Shi, J., & Hu, S. J. (2006, January). Quality Assured Setup Planning Based on the Stream-of-Variation Model for Multi-Stage Machining Processes. In International Manufacturing Science and Engineering Conference (Vol. 47624, pp. 529-538). https://doi.org/10.1115/MSEC2006-21065
Liu, Q., Dong, M., & Chen, F. F. (2018). Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robotics and Computer-Integrated Manufacturing, 51, 238-247. https://doi.org/10.1016/j.rcim.2018.01.002
Liu, X., Wang, W., & Peng, R. (2017). An integrated preventive maintenance and production planning model with sequence‐dependent setup costs and times. Quality and Reliability Engineering International, 33(8), 2451-2461. https://doi.org/10.1002/qre.2202
Mahmud, I., Ismail, I., Abdulkarim, A., Shehu, G. S., Olarinoye, G. A., & Musa, U. (2024). Selection of an appropriate maintenance strategy using analytical hierarchy process of cement plant. Life Cycle Reliability and Safety Engineering, 13(2), 103-109. https://doi.org/10.1007/s41872-024-00249-7
Miyata, H. H., Nagano, M. S., & Gupta, J. N. (2019). Integrating preventive maintenance activities to the no-wait flow shop scheduling problem with dependent-sequence setup times and makespan minimization. Computers & Industrial Engineering. https://doi.org/10.1016/j.cie.2019.05.034
Moreno‐Trejo, J., Kumar, R., & Markeset, T. (2012). Factors influencing the installation and maintenance of subsea petroleum production equipment: a case study. Journal of quality in maintenance engineering, 18(4), 454-471. https://doi.org/10.1108/13552511211281606
Oliveira, M. A., & Lopes, I. (2020). Evaluation and improvement of maintenance management performance using a maturity model. International Journal of Productivity and Performance Management, 69(3), 559-581. https://doi.org/10.1108/IJPPM-07-2018-0247
Regattieri, A., Giazzi, A., Gamberi, M., & Gamberini, R. (2015). An innovative method to optimize the maintenance policies in an aircraft: General framework and case study. Journal of air transport management, 44, 8-20. https://doi.org/10.1016/j.jairtraman.2015.02.001
Ruiz R, Maroto C. (2016). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research. 169(3):781-800. https://doi.org/10.1016/j.ejor.2004.06.038
Sahu, V. K., Agnihotri, G., & Sadiwala, C. M. (2008). An empirical study on total quality management in maintenance and repair workshops in India. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1557-1561). IEEE. 10.1109/IEEM.2008.4738133
Sana, S. S. (2012). Preventive maintenance and optimal buffer inventory for products sold with warranty in an imperfect production system. International Journal of Production Research, 50(23), 6763-6774. https://doi.org/10.1080/00207543.2011.623838
Shahbazi, A. Vahidy, H. (2024), Optimization Based on Simulation Studies of the Number of Machinery on the Workshop Production Scheduling Under Uncertainty Conditions and Space and Budget Constraints, Research in Production and Operations Management, 15(1), 113-136. 10.22108/pom.2024.137960.1511.
Shahin, A., Aminsabouri, N., & Kianfar, K. (2018). Developing a Decision Making Grid for determining proactive maintenance tactics: A case study in the steel industry. Journal of Manufacturing Technology Management, 29(8), 1296-1315.https://doi.org/10.1108/JMTM-12-2017-0273
Sharma, M., Joshi, S., & Kumar, A. (2020). Assessing enablers of e-waste management in circular economy using DEMATEL method: An Indian perspective. Environmental Science and Pollution Research, 27(12), 13325-13338. https://doi.org/10.1007/s11356-020-07765-w
Souza, R. L. C., Ghasemi, A., Saif, A., & Gharaei, A. (2022). Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance. Computers & Industrial Engineering, 168, 108130. https://doi.org/10.1016/j.cie.2022.108130
Tavakli Moghadam, H. Dzagri, H. Amin Naseri, M. R. (1401). Real-time workshop work scheduling and dynamic predictive maintenance using machine learning, Journal of Decision and Operations Research, Volume 7(3), pp. 515-496. http://dorl.net/dor/20.1001.1.25385097.1401.7.3.8.7
Wang, L., Zhang, Z., & Yin, Y. (2022). Order acceptance and scheduling problem with outsourcing in seru production system considering lot-spitting. European Journal of Industrial Engineering, 16(1), 91-116. https://doi.org/10.1504/EJIE.2022.119371
Wang, S., & Ye, B. (2019). Exact methods for order acceptance and scheduling on unrelated parallel machines. Computers & Operations Research, 104, 159-173. https://doi.org/10.1016/j.cor.2018.12.016
Wang, Y., Xia, T., Xu, Y., Ding, Y., Zheng, M., Pan, E., & Xi, L. (2024). Joint optimization of flexible job shop scheduling and preventive maintenance under high-frequency production switching. International Journal of Production Economics, 269, 109163. https://doi.org/10.1016/j.ijpe.2024.109163
Yang, L., Ma, X., Peng, R., Zhai, Q., & Zhao, Y. (2017). A preventive maintenance policy based on dependent two-stage deterioration and external shocks. Reliability Engineering & System Safety, 160, 201-211. https://doi.org/10.1016/j.ress.2016.12.008
Zhang, H., Buchmeister, B., Li, X., & Ojstersek, R. (2023). An Efficient Metaheuristic Algorithm for Job Shop Scheduling in a Dynamic Environment. Mathematics, 11(10), 2336. https://doi.org/10.3390/math11102336
Zhao, Z., & Zhou, H. (2022). A Hybrid Optimization Method for Manufacturing Cell Scheduling with Random Interruptions Based on Improved Wolf Pack Algorithm and Simulation. In Journal of Physics: Conference Series (Vol. 2173, No. 1, p. 012075). IOP Publishing, DOI 10.1088/1742-6596/2173/1/012075
Zhao, Z., Zhou, H., & Lei, Y. (2022). A Simulation Optimization Model for Cell Scheduling Considering Energy Consumption and Machine Breakdown. In Proceedings of 2021 Chinese Intelligent Systems Conference (pp. 126-133). Springer, Singapore. https://doi.org/10.1007/978-981-16-6328-4_15
Zhong, S., Pantelous, A. A., Goh, M., & Zhou, J. (2019). A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms. Mechanical Systems and Signal Processing, 124, 643-663. https://doi.org/10.1016/j.ymssp.2019.02.012.