طراحی چندهدفه نمودار کنترل میانگین متحرک موزون نمایی تعدیل ریسک شده برای نظارت زمان بقای بیماران با بکارگیری تکنیک های تصمیم گیری
محورهای موضوعی : مدیریت صنعتیامیر نصیری پور 1 , امیر عزیزی 2 , ایوب رحیم زاده 3 , محمدجواد ارشادی 4 , معصومه زینال نژاد 5
1 - دانشجوی دکتری، گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار، گروه مهندسی صنایع، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
4 - دانشیار پژوهشکده فناوری اطلاعات، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)، تهران، ایران
5 - استادیار، گروه مهندسی صنایع، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: بهینه سازی پارتو, تاپسیس, تعدیل ریسک, میانگین متحرک موزون نمایی, نمودار کنترل.,
چکیده مقاله :
در سالهای اخیر توجه زیادی به توسعه نمودارهای کنترل برای نظارت بر سیستمهای بهداشت و درمان شده است. بر این اساس، هدف این مقاله طراحی چندهدفه یک نمودار کنترل میانگین متحرک موزون نمایی تعدیل ریسکشده بهمنظور تشخیص تغییرات کاهشی در زمان بقای بیماران میباشد. بیماران پیش از اینکه تحت عمل جراحی قرار بگیرند عوامل ریسک گوناگونی دارند که بر فرایند جراحی تأثیر میگذارند. از اینرو تعدیل ریسک در طراحی نمودار کنترل پیشنهادی، با هدف در نظر گرفتن تأثیر عوامل ریسک قبل از عمل هر بیمار بر روی زمان بقای او و با استفاده از مدل زمان شکست تسریعیافته انجام میشود. بهمنظور استفاده از نمودار کنترل پیشنهادی ضروری است پارامترهای طراحی به شکلی تعیین شوند که خواص مطلوب اقتصادی و آماری بهطور همزمان برآورده شوند. در نتیجه، یک مدل چندهدفه پیشنهاد شده که حل آن توسط یک رویکرد دو مرحلهای مبتنی بر بهینهسازی پارتو و تکنیک تاپسیس انجام میپذیرد. عملکرد رویکرد پیشنهادی در یکی از مراکز درمانی شهرستان کرمانشاه مورد بررسی واقع شده است و مقایسه برای مدل طراحی چندهدفه با مدل تکهدفه طراحی خالص اقتصادی در حضور انحرافات با دلیل چندگانه نیز در نظر گرفته شده که در این قسمت، یافتهها مشخص مینماید که مدل چندهدفه با افزایش مقدار کمی در هزینه، عملکرد آماری مطلوبتر و بهتری را نشان میدهد. بهطور کلی، در این مقاله رویکرد جدیدی از مسئله چندهدفه برای طراحی اقتصادی آماری نمودار کنترل تعدیل ریسکشده با توجه به کاربرد آن در سیستمهای بهداشت و درمان، مدلسازی شده است.
In recent years, much attention has been paid to the development of control charts for monitoring healthcare systems. Based on this, the aim of this paper is to design a multi-objective risk-adjusted exponentially weighted moving average control chart in order to detect decreasing changes in patients' survival time. Before undergoing surgery, patients have various risk factors that affect the surgical process. Therefore, risk adjustment in the design of the proposed control chart is done with the aim of considering the effect of the preoperative risk factors of each patient on his survival time and using the accelerated failure time model. In order to use the proposed control chart, it is necessary to determine the design parameters in such a way that the desired economic and statistical properties are satisfied simultaneously. As a result, a multi-objective model is proposed, which is solved by a two-stage approach based on the Pareto optimization and the TOPSIS technique. The performance of the proposed approach has been investigated in one of the medical centers of Kermanshah city, and a comparison with the pure economic design model for the multi-objective design model in the presence of multiple assignable causes has also been considered. By increasing the cost by a small amount, it shows more favorable and better statistical performance. In this paper, a new approach of the multi-objective problem for the statistical economic design of the risk-adjusted control chart has been modeled according to its application in healthcare systems.
Amiri, A., Moslemi, A., & Doroudyan, M. H. (2015). Robust economic and economic-statistical design of EWMA control chart. The International Journal of Advanced Manufacturing Technology, 78, 511-523.
Begun, A., Kulinskaya, E., & MacGregor, A. J. (2019). Risk-adjusted CUSUM control charts for shared frailty survival models with application to hip replacement outcomes: a study using the NJR dataset. BMC medical research methodology, 19(1), 1-15.
Brunelli, M., & Fedrizzi, M. (2024). Inconsistency indices for pairwise comparisons and the Pareto dominance principle. European Journal of Operational Research, 312(1), 273-282.
Ding, N., He, Z., Shi, L., & Qu, L. (2021). A new risk‐adjusted EWMA control chart based on survival time for monitoring surgical outcome quality. Quality and Reliability Engineering International, 37(4), 1650-1663.
Doosti, A., & Rezaie Moghadam, S. (2022). Presenting a multi-objective mathematical model of multi-product and multi-stage fuzzy production planning for several periods in Gamz software. Journal of Strategic Management in Industrial Systems, 59(59), 99-112. (In Persian).
Ghodha, V., Dubey, R., Kumar, R., Singh, S., & Kaur, S. (2022). Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Materials Today: Proceedings, 50, 709-715.
Duncan, A. J. (1956). The economic design of X charts used to maintain current control of a process. Journal of the American statistical association, 51(274), 228-242.
Forozandeh, M., & Roozbahani, M. (2023). Selecting the portfolio of construction projects with a life cycle approach using DEMATEL and TOPSIS Fuzzy techniques (Sarchesmeh Mehrkariman Company). Journal of Strategic Management in Industrial Systems, 17(62), 37-54. (In Persian).
Katebi, M., & Pourtaheri, R. (2019). An economic statistical design of the Poisson EWMA control charts for monitoring nonconformities. Journal of Statistical Computation and Simulation, 89(15), 2813-2830.
Kim, J. S., Choi, M., Kim, S. H., Choi, S. H., & Kang, C. M. (2022). Safety and feasibility of laparoscopic pancreaticoduodenectomy in octogenarians. Asian Journal of Surgery, 45(3), 837-843.
Lee, M. H., Khoo, M. B., Haq, A., & Chew, X. (2023). Economic-statistical design of the variable sampling interval Poisson EWMA chart. Communications in Statistics-Simulation and Computation, 52(5), 2139-2150.
Liu, L., Lai, X., Zhang, J., & Tsung, F. (2018). Online profile monitoring for surgical outcomes using a weighted score test. Journal of Quality Technology, 50(1), 88-97.
Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
Lu, S. L., & Huang, C. J. (2017). Statistically constrained economic design of maximum double EWMA control charts based on loss functions. Quality Technology & Quantitative Management, 14(3), 280-295.
Mohammadian, F., Niaki, S. T. A., & Amiri, A. (2016). Phase‐I risk‐adjusted geometric control charts to monitor health‐care systems. Quality and Reliability Engineering International, 32(1), 19-28.
Mustafa, F., Sherwani, R. A. K., & Raza, M. A. (2023). A new exponentially weighted moving average control chart to monitor count data with applications in healthcare and manufacturing. Journal of Statistical Computation and Simulation, 93(18), 3308-3328.
Nasiri Pour, A., Azizi, A., Rahimzadeh, A., Ershadi, M. J., & Zeinalnezhad, M. (2024). Designing a Log-Logistic-Based EWMA Control Chart Using MOPSO and VIKOR Approaches for Monitoring Cardiac Surgery Performance. Decision Making: Applications in Management and Engineering, 7(1), 342-363.
Ghafour, K. (2024). Multi-objective continuous review inventory policy using MOPSO and TOPSIS methods. Computers & Operations Research, 163, 106512.
Niaki, S. T. A., Malaki, M., & Ershadi, M. J. (2011). A particle swarm optimization approach on economic and economic-statistical designs of MEWMA control charts. Scientia Iranica, 18(6), 1529-1536.
Parsa, M., & Van Keilegom, I. (2023). Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?. Statistical Papers, 64(3), 835-855.
Rafiei, N., Asadzadeh, S., & Niaki, S. T. A. (2021). Multi-objective design of risk-adjusted control chart in healthcare systems with economic and statistical considerations. Communications in Statistics-Simulation and Computation, 52(7), 2667-2984.
Rafiei, N., & Asadzadeh, S. (2022). Designing a risk-adjusted CUSUM control chart based on DEA and NSGA-II approaches A case study in healthcare: Cardiovascular patients. Scientia Iranica, 29(5), 2696-2709.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to and R charts. Technometrics, 31(3), 313-320.
Sego, L. H., Reynolds Jr, M. R., & Woodall, W. H. (2009). Risk‐adjusted monitoring of survival times. Statistics in medicine, 28(9), 1386-1401.
Serel, D. A. (2009). Economic design of EWMA control charts based on loss function. Mathematical and Computer Modelling, 49(3-4), 745-759.
Xue, L., Wang, Q., Li, C., & An, L. (2023). Economic design of residuals MEWMA control chart with variable sampling intervals and sample size. Communications in Statistics-Simulation and Computation, 1-22.
Yeganeh, A., Chukhrova, N., Johannssen, A., & Fotuhi, H. (2023). A network surveillance approach using machine learning based control charts. Expert Systems with Applications, 219, 119660.