The effects of low-power laser on the promotion of spermatogenesis in a mouse model of azoospermia (in-vivo)
Subject Areas : Nano BiophotonicsHabib Tajalli 1 , Masoud Maleki 2 , Esmail Safavi 3 , Reza Shahi 4 , Fatemeh Firoozi 5 , Zahra Akbarpour 6 , Alireza Sotoudeh Khyaban 7
1 - Biophotonics Research Center,Tabriz Branch, Islamic Azad University
2 - Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
3 - Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Azad Islamic University, Tabriz, Iran
4 - Department of Mathematics and Statistics, Tabriz branch, Islamic Azad University, Tabriz, Iran
5 - Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
6 - Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
7 - Research Center of Biophtonics, Islamic Azad university, Tabriz Branch, Tabriz, Iran
Keywords: Infertility, Spermatogenesis, azoospermia, Laser therapy,
Abstract :
In this paper we investigate the effect of low power laser on spermatogenesis in testicular tissue of azoospermia mouse model in-vivo. In this experimental work, 112 adult male Syrian mice were randomly divided into three main groups: negative control group, positive (Azoospermia control) group, and experimental group, but to determine the best dose of laser radiation three experimental groups were tested. To create azoospermia control group, Busulfan was used at a dose of 30mg/kg, for 21 days by intraperitoneal injection. In the experimental groups after Busulfan treatment, they were applied by the low power diode laser (wavelength of 808nm) with three different energy densities of 2, 4, and 8 J/cm2. The employment of a laser with an energy density of 8 J/cm2 was shown to be beneficial in boosting germ cell and sperm production.
REFERENCES
[1] J. WHO, International Classification of Diseases, 11th Revision (ICD-11) Geneva, 2018.
[2] U.I. Pathak, J.S. Gabrielsen, and L.I. Lipshultz, "Cutting-edge evaluation of male infertility," Urol Clin North Am, vol. 47, pp. 129–138, 2020.
[3] F. Zegers-Hochschild, G. D. Adamson, J. de Mouzon, O. Ishihara, R. Mansour, K. Nygren, E. Sullivan, and S. Vanderpoel, "International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology," Fertil Steril. vol. 92, pp. 1520-1524, 2009.
[4] V.A. Bozhedomov, I.M. Rokhlikov, A.A. Tretyakov, N.A. Lipatova, and I.V. Vinogradov, "Andrologic aspects of infertile marriage," Meditsinskiy sovet, vol. 8, pp. 7-13, 2013.
[5] D. Ol', T. Shuster, and S. Kvolich, "Male infertility. In: Fal'kone T, Kherd V, eds. Reproductive medicine and surgery," pp. 616-631, 2013.
[6] A. Jungwirth, A. Giwercman, H. Tournaye, T. Diemer, Z. Kopa, G. Dohle, and C. Krausz, "European Association of Urology guidelines on Male Infertility: the 2012 update," Eur Urol, vol. 62, pp. 324-332, 2012.
[7] P.J. Rowe, F.H. Comhaire, T.B. Hargreave, and A.M.A. Mahmoud, WHO Manual for the Standardized Investigation, Diagnosis and Management of the Infertile Male, in Cambridge University Press. Cambridge, 2000.
[8] S.V. Moskvin and O.I. Apolikhin, "Effectiveness of low level laser therapy for treating male infertility," Biomedicine (Taipei), vol. 8, pp. 7-22, 2018.
[9] Z. He, M. Kokkinaki, J. Jiang, W. Zeng, I. Dobrinski, and M. Dym "Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting," Methods Mol Biol, vol. 825, pp. 45-57, 2012.
[10] I. D. Sharlip, J. P. Jarow, A. M. Belker, L. I Lipshultz, M. Sigman, A. J Thomas, P. N Schlegel, S. S Howards, A. Nehra, M. D. Damewood, and J. W Overstreet, "Best practice policies for male infertility," Fertility and sterility, vol. 77, pp. 873-882, 2002.
[11] P.N. Kolettis, "The evaluation and management of the azoospermic patient," J Androl, vol. 23, pp. 293-305, 2002.
[12] K. Gassei and K.E. Orwig, "Experimental methods to preserve male fertility and treat male factor infertility," Fertility and sterility, vol. 105, pp. 256-266, 2016.
[13] O.I. Apolikhin and S.V. Moskvin, "Laser therapy for male infertility," Urologia, vol. 5, pp. 123-155, 2017.
[14] D. Preece, K. W. Chow, V. Gomez-Godinez, K. Gustafson, S. Esener, N. Ravida, B. Durrant, and M. W. Berns, "Red light improves spermatozoa motility and does not induce oxidative DNA damage," Nature, vol. 7, pp. 1-9, 2017.
[15] F. F. El-Shamy, S. S. El-kholy, and M. M. Abd El-Rahman, "Effectiveness of laser acupoints on women with polycystic ovarian syndrome: a randomized controlled trial," J Lasers Med Sci, vol. 9, pp. 113-120, 2018.
[16] M. Deihimi, M. Azornia, N. Takzare, M. Rajab, and GH. Hasanzadeh, "Effect of red and infrared spectrum low level of laser rays on Rat Seminiferous tubules," Journal of Gorgan University of Medical Sciences,vol.12, pp. 10-17, 2010.
[17] S.R. Tsai and M.R. Hamblin, "Biological effects and medical applications of infrared radiation," J Photochem Photobiol B, vol. 9, pp. 1724, 2020.
[18] C. Dompe, L. Moncrieff, J. Matys, K. Grzech-Leśniak, I. Kocherova, A. Bryja, M. Bruska, M. Dominiak, P. Mozdziak, T. H. Ishimine Skiba, J. A. Shibli, A. Angelova Volponi, B. Kempisty, and M. Dyszkiewicz-Konwińska, "Photobiomodulation-Underlying Mechanism and Clinical Applications," J Clin Med, vol. 9, pp. 1724 (1-18), 2020.
[19] Y. Tsuka, R. Kunimatsu, H. Gunji, T. Abe, C. Concepción Medina, K. Nakajima, A. Kimura, T. Hiraki, A. Nakatani, and K. Tanimoto, "Examination of the Effect of the Combined Use of Nd: YAG Laser Irradiation and Mechanical Force Loading on Bone Metabolism Using Cultured Human Osteoblasts," J. Lasers Med. Sci, vol. 11, pp. 138–143, 2020.
[20] F. Zare, A. Moradi, S. Fallahnezhad, S. Kamran Ghoreishi, A. Amini, S. Chien, and M. Bayat, "Photobiomodulation with 630 plus 810nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells," J. Photochem. Photobiol. BBiol, vol. 201, pp. 111658, 2019.
[21] P.R. Garrido, A.C.F. Pedroni, D.P. Cury, M.S. Moreira, F. Rosin, G. Sarra, and M.M. Marques, "Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets," J. Photochem. Photobiol. BBiol, vol. 194, pp. 149–157, 2019.
[22] Y. Ohsugi, H. Niimi, T. Shimohira , M. Hatasa, S. Katagiri, A. Aoki, and T. Iwata, "In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration," Int J Mol Sci, vol. 21, pp. 9002, 2020.
[23] A.F. P. Siqueira, F. S. Maria, C. M. Mendes, T. R. S. Hamilton, A. Dalmazzo, Th. R. Dreyer, H. M. da Silva, M. Nichi, M. P. Milazzotto, J. A. Visintin, and M. E. O. A. Assumpçã "Effects of photobiomodulation therapy (PBMT) on bovine sperm function," Lasers Med Sci, vol. 31, pp. 1245–1250, 2016.
[24] N, Iaffaldano, A. Meluzzi, A. Manchisi, and S. Passarella, "Improvement of stored turkey semen quality as a result of He–Ne laser irradiation," Anim. Reprod. Sci, vol. 85, pp. 317-325, 2005.
[25] M. I. Corral-Baqués, T. Rigau, M. Rivera, J. E. Rodríguez, and J. Rigau, "Effect of 655-nm diode laser on dog sperm motility," Lasers Med Sci, vol. 20, pp. 28-34, 2005.
[26] C.P. Gabel, J. Carroll, and K. Harrison, "Sperm motility is enhanced by Low Level Laser and Light Emitting Diode photobiomodulation with a dose-dependent response and differential effects in fresh and frozen samples," Laser Ther, vol. 27, pp. 131-136, 2018.
[27] R. S. Firestone, N. Esfandiari, S. I. Moskovtsev, E. Burstein, G. T. Videna, C. Librach, Y. Bentov, and R. F. Casper, "The effects of low‐level laser light exposure on sperm motion characteristics and DNA damage," J Androl, vol. 33, pp. 469-473, 2012.
[28] M. Ji Bae, M. K. Kang, Y. U. Kye, J.-H. Baek, Y-J Sim, H.-J. Lee, Y.-R. Kang, W. S. Jo, J. S. Kim, and Ch. G. Lee, "Differential Effects of Low and High Radiation Dose Rates on Mouse Spermatogenesis," Int J Mol Sci, vol. 22, pp. 12834, 2021.
[29] M. Abuelhij, C. C. Weng, G. Shetty, and M. L. Meistrich, "Differences in radiation sensitivity of recovery of spermatogenesis between rat strains," Toxicol Sci, vol. 126, pp. 545-553, 2012.
[30] M. Hasegawa, Y. Zhang, H. Niibe, N. H. A. Terry, and M. L. Meistrich, "Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice," Radiat Res, vol. 149, pp. 263-370, 1998.
[31] Y. van der Meer, R. Huiskamp, J. A Davids, I. van der Tweel, and D. G. de Rooij, "The sensitivity of quiescent and proliferating mouse spermatogonial stem cells to X irradiation," Radiat. Res, vol. 130, pp. 289–295, 1992.
[32] T. R. Dreyer, A. F. P. Siqueira, T. D. Magrini, P. A. Fiorito, M. E. O. A. Assumpção, M. Nichi, H. S. Martinho, and M. P. Milazzotto, "Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation," Biomedical Optics, Optical Society of America, vol. 8092, pp. 80920v, 2011.
[33] D.-Z. Wang, X.-H. Zhou, Y.-L. Yuan, and X.-M. Zheng, "Optimal dose of busulfan for depleting testicular germ cells of recipient mice before spermatogonial transplantation," Asian J Androl, vol. 12, pp. 263-270, 2010.
[34] K. Zohni, X. Zhang, S.L. Tan, P. Chan, and M.C. Nagano, "The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice," Hum Reprod,vol. 27, pp. 44-53, 2012.
[35] R. Chegini, P. Soleimani, M. Sadeghi, R. Mohammad Yosef, and F. Zafari "Investigating the effect of fennel and cinnamon combined extract on spermatogenesis and testis tissues in busulfan induced infertile rats," Journal of Applied Biotechnology Reports, vol. 6, pp. 96-100, 2019.
[36] F. Allameh, M. Razzaghi, S. Hosseini, M. Barati, Z. Razzaghi, S. Salehi, S. Mohammad Ghahestani, and V. Shahabi, "The Effect of Laser Acupuncture on Semen Parameters in Infertile Men With Oligospermia: A Randomized Clinical Trial," Journal of Lasers in Medical Sciences, vol. 12, pp: 84, 2021.
[37] N. Qu, M. Itoh, and K. Sakabe, "Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology," Int J Mol Sci, vol. 20, pp. 957, 2019.
[38] A. Tamadon, D. Mehrabani, F. Rahmanifar, A. Raayat Jahromi, M. Panahi, Sh. Zare, Z. Khodabandeh, I. Razeghian Jahromi, N. Tanideh, M. Dianatpour, M. Ramzi, and O Koohi-Hoseinabadi, "Induction of spermatogenesis by bone marrow-derived mesenchymal stem cells in busulfan-induced azoospermia in hamster," International journal of stem cells, vol. 8, pp. 134–145, 2015.
[39] Gh. Hasanzadeh, M. Deihimi, M. Azornia, M. Rajabi, and N. Takzare, "Effect of red and infrared spectrum low level of laser rays on Rat Seminiferous tubules," J Gorgan Univ Med Sci, vol. 12, pp. 10-17, 2010.
[40] F. Rezaei, M. Bayat, H. Nazarian, A. Aliaghaei, H.-A. Abaszadeh, P. Naserzadeh, A. Amini, V. Ebrahimi, Sh. Abdi, and M.-A. Abdollahifar, "Photobiomodulation Therapy Improves Spermatogenesis in Busulfan-Induced Infertile Mouse," Reprod Sci, vol. 28, pp. 2789-2798, 2021.
[41] M. B. R. Alves, R. P. d. Arruda, L. Batissaco, Sh. A. Florez-Rodriguez, B. M. M. d. Oliveira, M. A. Torres, G. M. Ravagnani, R. Lançoni, T. G. d. Almeida, V. M. Storillo, V. S. Vellone, C. R. Franci, H. E. Thomé, C. L. Canella, A. F. C. D. Andrade, and E. C. C. Celeghini, "Low-level laser therapy to recovery testicular degeneration in rams: effects on seminal characteristics, scrotal temperature, plasma testosterone concentration, and testes histopathology," Lasers Med. Sci, vol. 31, pp. 695-704, 2016.
[42] B. Meier, A. R. Cross, J. T. Hancock, F. J. Kaup, and O. T. Jones, "Identitication ot a superoxide-generating NADPH oxidase system in human fibroblasts," Biochem J, vol. 275, pp. 241-246, 1991.
[43] G. Pal, A. Dutta, K. Mitra, M. S Grace, T. B Romanczyk, X. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W Waynant, and D. B Tata, "Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes," J Photochem Photobiol B, vol. 86, pp. 252-261, 2007.
[44] R. S. Yazdi, S. Bakhshi, F. irooz, J. Alipoor, M. R. Akhoond, S. Borhani, F. Farrahi, M. Lotfi Panah, and M. A. Sadighi Gilani, "Effect of 830-nm diode laser irradiation on human sperm motility," Lasers Med. Sci. vol. 29, pp. 97-104 2014.