New-generation of PDMS-based Lenses for Color Blindness management
Subject Areas : Nano BiophotonicsSeyedeh Mehri Hamidi 1 * , neda Roostaei 2
1 - Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
2 - Shahid Beheshti university
Keywords: Gold nanoparticles, Plasmonic, color blindness, contact lens, color vision deficiency,
Abstract :
Being a Color blindness or color vision deficiency (CVD) is a type of ocular disorder that prevents the recognizing the special colors. Until now, the certain cure for CVD has not been discovered. Recently, glasses and contact lenses based on chemical dyes were investigated as promising tools for color vision deficiency management. In this work, we proposed the plasmonic PDMS-based lenses to improve the red-green color vision deficiency. We utilized polydimethylsiloxane (PDMS) for fabricating the lens which is a biocompatible, nontoxic, stretchable, and transparent material and will be a suitable option for producing the contact lenses. Finally, the suggested contact lens based on PDMS was immersed in a HAuCl4·3H2O gold solution. Our suggested plasmonic lens is based on localized surface plasmon resonance (LSPR) effect and plasmonic gold nanoparticles dispersed in the produced contact lens based on PDMS suggest a suitable color filter for CVD improvement. The fabricated contact lens suggests perfect features including biocompatibility, durability, and stretchability, that will be helpful for color vision deficiency management.
[1] M. P. Simunovic, “Acquired color vision deficiency,” Survey of ophthalmology, Vol. 61, no. 2, pp. 132-155, 2016.
[2] Y. C. Chen, Y. Guan, T. Ishikawa, H. Eto, T. Nakatsue, J. Chao, and M. Ayama, “Preference for color‐enhanced images assessed by color deficiencies,” Color Research & Application, Vol. 39, no. 3, pp. 234-251, 2014.
[3] K. Mancuso, W. W. Hauswirth, Q. Li, T. B. Connor, J. A. Kuchenbecker, M. C. Mauck, J. Neitz, and M. Neitz, “Gene therapy for red–green colour blindness in adult primates,” Nature, Vol. 461, no. 7265, pp. 784-787, 2009.
[4] J. J. Alexander, Y. Umino, D. Everhart, B. Chang, S. H. Min, Q. Li, A. M. Timmers, N. L. Hawes, J. J. Pang, R. B. Barlow, and W. W. Hauswirth, “Restoration of cone vision in a mouse model of achromatopsia,” Nature medicine, Vol. 13, no. 6, pp. 685-687, 2007.
[5] M. Neitz and J. Neitz, “Curing color blindness—mice and nonhuman primates,” Cold Spring Harbor perspectives in medicine, Vol. 4, no. 11, pp. a0174 (18-30), 2014.
[6] F. W. Cornelissen and E. Brenner, “Is adding a new class of cones to the retina sufficient to cure color-blindness?,” Journal of vision, Vol. 15, no. 13, pp. 22-22, 2015.
[7] R. Mastey, E. J. Patterson, P. Summerfelt, J. Luther, J. Neitz, M. Neitz, and J. Carroll, “Effect of “color-correcting glasses” on chromatic discrimination in subjects with congenital color vision deficiency,” Investigative Ophthalmology & Visual Science, Vol. 57, no. 12, pp. 192-192, 2016.
[8] L. Gómez-Robledo, E. M. Valero, R. Huertas, M. A. Martínez-Domingo, and J. Hernández-Andrés, “Do EnChroma glasses improve color vision for colorblind subjects?,” Optics express, Vol. 26, no. 22, pp. 28693-28703, 2018.
[9] M. A. Martínez-Domingo, L. Gómez-Robledo, E. M. Valero, R. Huertas, J. Hernández-Andrés, S. Ezpeleta, and E. Hita, “Assessment of VINO filters for correcting red-green Color Vision Deficiency,” Optics express, Vol. 27, no. 13, pp. 17954-17967, 2019.
[10] H. Zeltzer, “The X-chrom lens,” Journal of the American Optometric Association, Vol. 42, no. 9, pp. 933-939, 1971.
[11] I. M. Siegil, “The X-Chrom lens. On seeing red,” Survey of ophthalmology, Vol. 25, no. 5, pp. 312-324, 1981.
[12] O. J. Muensterer, M. Lacher, C. Zoeller, M. Bronstein, and J. Kübler, “Google Glass in pediatric surgery: an exploratory study,” International journal of surgery, Vol. 12, no. 4, pp. 281-289, 2014.
[13] L. Qian, A. Barthel, A. Johnson, G. Osgood, P. Kazanzides, N. Navab, and B. Fuerst, “Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display,” International journal of computer assisted radiology and surgery, Vol. 12, no. 6, pp. 901-910, 2017.
[14] A. Seebeck, “Ueber den bei manchen Personen vorkommenden Mangel an Farbensinn,” Annalen der Physik, Vol. 118, no. 10, pp. 177-233, 1837.
[15] A. R. Badawy, M. Um. Hassan, M. Elsherif, Z. Ahmed, A. K. Yetisen, and H. Butt, “Contact lenses for color blindness,” Advanced healthcare materials, Vol. 7, no. 12, pp. 18001(52-58), 2018.
[16] S. Karepov, and T. Ellenbogen, “Metasurface-based contact lenses for color vision deficiency,” Optics letters, Vol. 45, no. 6, pp. 1379-1382, 2020.
[17] J.G. Kreifeldt, “An analysis of surface-detected EMG as an amplitude-modulated noise,” Int. Conf. Medicine and Biological Engineering, Chicago, II, 1989.
[18] A. E. Salih, M. Elsherif, F. Alam, A. K. Yetisen, and H.Butt, “Gold Nanocomposite Contact Lenses for Color Blindness Management,” ACS nano, Vol. 15, no. 3, pp. 4870-4880, 2021.
[19] G. Ro, Y. Choi, M. Kang, S. Hong, and Y. Kim, “Novel color filters for the correction of red–green color vision deficiency based on the localized surface plasmon resonance effect of Au nanoparticles,” Nanotechnology, Vol. 30, no. 40, pp. 405706 (1-14), 2019.
[20] M. Ghasemi, N. Roostaei, F. Sohrabi, S. M. Hamidi, and P. K. Choudhury, “Biosensing applications of all-dielectric SiO2-PDMS meta-stadium grating nanocombs,” Optical Materials Express, Vol. 10, no. 4, pp. 1018-1033, 2020.
[21] N. Roostaei, and S. M. Hamidi, “All-dielectric achiral etalon-based metasurface: Ability for glucose sensing,” Optics Communications, Vol. 527, pp. 1289 (71-80), 2023.
[22] S. Torino, B. Corrado, M. Iodice, and G. Coppola, “Pdms-based microfluidic devices for cell culture,” Inventions, Vol. 3, no. 3, pp. 65-78, 2018.
[23] S. Tayyaba, M. W. Ashraf, Z. Ahmad, N. Wang, M. J. Afzal, and N. Afzulpurkar, “Fabrication and analysis of polydimethylsiloxane (PDMS) microchannels for biomedical application,” Processes, Vol. 9, no. 1, pp. 57-87, 2021.
[24] S. Seethapathy and T. Gorecki, “Applications of polydimethylsiloxane in analytical chemistry: A review,” Analytica chimica acta, Vol. 750, pp. 48-62, 2012.
[25] M. M. Kemp, A. Kumar, S. Mousa, T. J. Park, P. Ajayan, N. Kubotera, S. A. Mousa, and R. J. Linhardt, “Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities,” Biomacromolecules, Vol. 10, no. 3, pp. 589-595, 2009.
[26] H. Chugh, D. Sood, I. Chandra, V. Tomar, G. Dhawan, and R. Chandra, “Role of gold and silver nanoparticles in cancer nano-medicine,” Artificial cells, nanomedicine, and biotechnology, Vol. 46, no. sup1, pp. 1210-1220, 2018.
[27] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chemical Society Reviews, Vol. 37, no. 9, pp. 1896-1908, 2008.
[28] A. R. Gul, F. Shaheen, R. Rafique, J. Bal, S. Waseem, and T. J. Park, “Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy,” Chemical Engineering Journal, Vol. 407, pp. 127202 (1-54), 2021.
[29] A. K. Mandal, “Silver nanoparticles as drug delivery vehicle against infections,” Global Journal of Nanomedicine, Vol. 3, no. 2, pp. 1-4, 2017.
[30] P. Prasher, M. Sharma, H. Mudila, G. Gupta, A. K. Sharma, D. Kumar, H. A. Bakshi, P. Negi, D. N. Kapoor, D. K. Chellappang, M. M. Tambuwalah, and K. Dua, “Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery,” Colloid and Interface Science Communications Vol. 35, pp. 1002 (44-56), 2020.
[31] N. Ibrahim, N. D. Jamaluddin, L. L. Tan, and N. Y. Mohd Yusof, “A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus,” Sensors, Vol. 21, no. 15, pp. 5114-5142, 2021.
[32] A. L. da Silva, M. G. Gutierres, A. Thesing, R. M. Lattuada, and J. Ferreira, “SPR biosensors based on gold and silver nanoparticle multilayer films,” Journal of the Brazilian Chemical Society Vol. 25, pp. 928-934, 2014.
[33] Y. Ma, N. Li, C. Yang, and X. Yang, “One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors,” Analytical and bioanalytical chemistry, Vol. 382, no. 4, pp. 1044-1048, 2005.
[34] S. K. Nune, P. Gunda, P. K. Thallapally, Y. Y. Lin, M. Laird Forrest, and C. J. Berkland, “Nanoparticles for biomedical imaging,” Expert opinion on drug delivery, Vol. 6, no. 11, pp. 1175-1194, 2009.
[35] X. Han, K. Xu, O. Taratula, and K. Farsad, “Applications of nanoparticles in biomedical imaging,” Nanoscale, Vol. 11, no. 3, pp. 799-819, 2019.
[36] L. Fabris, “Gold-based SERS tags for biomedical imaging,” Journal of Optics, Vol. 17, no. 11, pp. 114002 (1-15), 2015.
[37] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annual review of physical chemistry, Vol. 58, no. 1, pp. 267-297, 2007.
[38] E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced materials, Vol. 16, no. 19, pp. 1685-1706, 2004.
[39] B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano today, Vol. 4, no. 3, pp. 244-251, 2009.