شناسایی و اولویتبندی عوامل مؤثر بر بهرهوری صنایع تولیدی (موردمطالعه: صنایع دارویی و لوازم خانگی استان گیلان)
محورهای موضوعی : مهندسی صنایعحمزه امین طهماسبی 1 * , ندا کریمی 2 , مهدی زارع پور 3 , سید اسماعیل مقدس 4
1 - دانشیار گروه مهندسی صنایع، دانشکده فنی مهندسی شرق گیلان، دانشگاه گیلان،ایران
2 - استادیار گروه مهندسی صنایع، دانشکده فنی مهندسی شرق گیلان، دانشگاه گیلان،ایران
3 - کارشناس ارشد مهندسی صنایع، موسسه غیرانتفاعی راهبرد شمال، رشت، ایران
4 - کارشناس ارشد مدیریت بازرگانی، سازمان صنعت، معدن و تجارت گیلان،ایران
کلید واژه: بهرهوری, صنایع تولیدی, صنایع دارویی, صنایع لوازم خانگی, استان گیلان,
چکیده مقاله :
در دنیای کنونی یکی از مهمترین عوامل توسعۀاقتصادی کشور، ارتقای بهرهوری صنایع تولیدی است. شناسایی عوامل مؤثر بر بهرهوری صنایع تولیدی و اولویتبندی آنها در ارتقای بهرهوری مؤثر بوده و میتواند نویدبخش دستیابی به بهرهوری سازمانی و ملی باشد. هدف از انجام این پژوهش، شناسایی عوامل مؤثر بر ارتقای بهرهوری صنایع تولیدی است. روش پژوهش حاضر، توصیفی- پیمایشی و ابزار گردآوری دادهها، پرسشنامه میباشد؛ در گام نخست، با توجه به بررسیهای صورت گرفته از مرور پیشینۀ تحقیق به روش تطبیقی، مطالعات کتابخانهای و نظرخواهی از خبرگان، عوامل بالقوه مؤثر بر بهرهوری صنایع شناسایی و مورد تجزیهوتحلیل قرار گرفت. سپس عوامل در قالب چهار دسته اصلی تقسیم شده و با استفاده از پرسشنامه و تلفیق نظرات خبرگان، عوامل نهایی تعیین گردیدند. سپس میزان اهمیت عوامل منتخب با استفاده از روش تصمیمگیری Fuzzy SWARA مشخص شد و در پایان رتبهبندی صنایع منتخب استان به روش MOORA صورت گرفت. نتایج حاصل از این پژوهش نشان داد که عوامل "حاشیه سود"، "نسبت فروش بر داراییهای جاری" و "نسبت صادرات بر فروش" به ترتیب دارای بیشترین میزان اهمیت بوده و در میان صنایع دارویی و لوزم خانگی استان که در بورس اوراق بهادار حضور دارند، شرکت کاسپین تأمین با امتیاز بهرهوری 437/0 دارای بالاترین میزان بهرهوری میباشد.
In today's world, one of the most important factors of the country's economic development is improving the productivity of manufacturing industries. Identifying factors affecting the productivity of manufacturing industries and prioritizing them is effective in promoting productivity and can promise to achieve organizational and national productivity. The purpose of this research is to identify the effective factors in improving the productivity of manufacturing industries. The present research method is descriptive-survey and the data collection instrument is a questionnaire. In the first step, based on the review of the related literature, using a comparative method, and asking expert opinions, potential factors affecting the productivity of industries were identified and analyzed. Then, the factors were divided into four main categories and the selected factors were determined by using a questionnaire and incorporating the expert opinions. Then, the importance of the selected factors was determined using the Fuzzy SWARA decision-making method, and the final ranking of the selected industries of the province was done using the MOORA method. The results showed that the "profit margin", "ratio of sales to current assets" and " ratio of exports to sales" factors, respectively, have the highest importance and among the pharmaceutical and household appliances industries of the province that are present in the stock exchange. Caspian tamin company has the highest productivity with a productivity score of 0.437.
Amin-Tahmasbi, H., & Alireza, M. (2023). Stock ranking of companies in the three metals, chemical and pharmaceutical industries with a combined approach of fuzzy SWARA and COCOSO. Journal of Decisions and Operations Research, 8(3), 623-641. [in persian]. doi:10.22105/dmor.2022.336294.1597.
Amin-Tahmasbi, H., Asgharpour, M., & Izdiar, P. (2022). Evaluation of the government's support policies for the pharmaceutical industry in the midst of sanctions and the covid-19 pandemic. Journal of health administration, 25(1), 69-79. [in persian]. doi:10.52547/jha.25.1.69
Bakhshali, S., Peykarjou, K., HaJbar Kiani, K., & Memarnejad, A. (2023). Medium-term and long-term factors determining the productivity of all factors of production: A review. Political Sociology of Iran, 5(11), 3513-3531. doi:10.30510/PSI.2022.291645.1859.
Balk, B. M. (2021). Productivity. Springer International Publishing, 1-345. doi:10.1007/978-3-030-75448-8.
Barasa, L., Vermeulen, P., Knoben, J., Kinyanjui, B., & Kimuyu, P. (2019). Innovation inputs and efficiency: manufacturing firms in Sub-Saharan Africa. European Journal of Innovation Management, 22(1), 59-83. doi:10.1108/EJIM-11-2017-0176.
Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35(2), 445-469. doi:10.1287/mnsc.2022.4476.
Dieppe, A. (Ed.). (2021). Global productivity: Trends, drivers, and policies. World Bank Publications.
Fatah, R. H., & Pasławski, J. (2023). Factors Affecting Labor Productivity on Construction in Kurdistan of Iraq: Web Survey. Journal of Engineering, 29(01), 14-41. doi:10.31026/j.eng.2023.01.02.
Fathabadi, M., & Soufimajidpour, M. (2023). Higher education, technical efficiency and total productivity changes: evidence from Iran's manufacturing industries. Quarterly Journal of Research and Planning in Higher Education, 24(2), 27-51. [in persian]. doi:10.30495/ECO.2022.1953248.2632.
Goli, Y., Delangizan, S., & Falahati, A. (2019). Measurement of the production efficiency and it’s determinants in Iran provinces. Iranian Journal of conomic Research, 24(78), 195-221. [in persian]. doi:10.22054/ijer.2019.10167.
Nikmanesh, M., Feili, A., & Sorooshian, S. (2023). Employee Productivity Assessment Using Fuzzy Inference System. Information, 14(7),1-423. doi:10.3390/ info14070423.
Hakimi, I., Moradi, M., Shoul, A. (2022). A survey on the impact of HPWS on labor productivity in service SMEs: mediating role of social capital and knowledge exchange and combination. The Journal of Productivity Management, 16(63), 83-109. [in persian]. doi:10.30495/QJOPM.2020.1880527.2649.
Harati Mokhtari, A., & Younespoor, M. (2022). Identifying and prioritizing the factors affecting human resource productivity in Chabahar port. Oceanography, 13, 3-95. [in persian]. doi:10.52547/joc.11.44.1
Isazadeh, S., & Soufimajidpour, M. (2018). TFP growth, technological progress, efficiency changes: Empirical evidence from Iranian manufacturing industries. Economical modeling, 11(40), 29-48. [in persian].
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258. doi:10.3846/jbem. 2010.12.
Laleh, A., Gharabiglo, H., Ramazani, M., Iranzadeh, S. (2022). Designing an employer brand model in small and medium industries using meta-synthesis method: human resource productivity in focus. The Journal of Productivity Management, 16(63), 305-342. [in persian]. doi:10.30495/QJOPM.2022.1935221.3230.
Luria, G., Yagil, D., Gal, I. (2014). Quality and productivity: role conflict in the service context. The Service Industries Journal, 34(12), 955-973. doi:10.1080/02642069.2014.915948.
McCann, P., & Vorley, T. (2020). Introduction to productivity perspectives. In Productivity Perspectives (pp. 1-17). Edward Elgar Publishing. doi:10.4337/9781788978804.00006.
Mohamadian, B. (2021). Identifying effective factors on improving the productivity of human resources in the tire industry (case study: Iran Tire Company). Iranian rubber industry. 26(104), 51-61. [in persian]. doi:10.22034/IRM.2021.245281.1111.
Nasirzadeh, H., Amin-Tahmasbi, H., Khalili, H. A. (2021). Investment analysis in privatization of National Iranian Drilling Company using systems dynamics and BWM technique. Energy Policy, 148, 111963. doi:10.1016/j.enpol.2020.111963.
Nasrollahi, M., & Asgharizadeh, E. (2019). Identification and Prioritization of Criteria affecting the Productivity of Production Factors in Broiler Industry Using Fuzzy Best-Worst Method: A Case Study of West Azerbaijan Province of Iran. Agricultural Economics and Development, 27(2), 237-261. [in persian]. doi:10.30490/AEAD.2019.95476.
Nikookar, M., Fekri, R., Babaeianpour, M., & Akhavan, P. (2021). Identification and analysis of productivity enhancing dimensions in lean service: a grounded theory research. The Journal of Productivity Management, 15(4), 51-68. [in persian]. doi:10.30495/QJOPM.2020.1870505.2500.
Norozi, F., Nonejad, M., Ebrahimi, M., & Khodaparast Shirazi, J. (2021). Investigation of productivity growth factors in Iran using artificial neural networks algorithm. Economic growth and development research, 11(42), 58-35. [in persian]. doi:10.30473/egdr.2019.48433.5378.
Poswa, F., Adenuga, O. T., Mpofu, K. (2022). Productivity Improvement using simulated value stream mapping: a case study of the truck manufacturing industry. Processes, 10(9), 1884. doi:10.3390/pr10091884.
Saaty, T.L (2002), Decision making with the analytic hierarchy process. Scientia iranica, 9(3), 215-229. doi:0.1016/j.diabres.2013.11.002.
Saei, Y. (2022). Evaluating and ranking the indicators affecting Business Process Re-engineering (BPR) in order to improve the efficiency of manufacturing industries by using FANP method. Journal of Business Management, 14(55), 147-163. [in persian]. doi:20.1001.1.22520104.1401.14.55.9.8.
Seyedi, H. Farhadi, P., Hosseini, A. (2022). Identifying and prioritizing supply chain issues in Iran's wood and paper industries and providing improvement solutions with the QFD approach and multi-criteria decision making. Industrial engineering researches in production systems. 10(20),1-15. [in persian]. doi: 10.22084/IER.2023.27103.2102.
Heydarnezhad, Ali, Jafari, Seyed Mohammadbagher, Rahmani, Jafar, Zare Matin, Hassan. (2023). Presenting a Productivity Pattern Based on Social Capital Using the Meta-Synthesis Approach. The Journal of Productivity Management, 17(67), 177-208. doi:10.30495/qjopm.2022.1962985.3407.