مقایسه عملکرد و برخی خصوصیات فیزیولوژیکی ارقام گندم تحت تأثیر قطع آبیاری در منطقه شهریار
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیرضا افشاریان زاده 1 , اسلام مجیدی هروان 2 * , محمد نصری 3 , حسین حیدری شریف آباد 4 , قربان نورمحمدی 5
1 - دانشجوی دکترا، گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی علوم تحقیقات تهران، تهران، ایران
2 - استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی علوم تحقیقات تهران، تهران، ایران
3 - دانشیار، گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد ورامین- پیشوا، ورامین، تهران، ایران
4 - استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی علوم تحقیقات تهران، تهران، ایران
5 - استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه آزاد اسلامی علوم تحقیقات تهران، تهران، ایران
کلید واژه: عملکرد, تنش خشکی, گندم, ارقام, خصوصیات بیوشیمیایی,
چکیده مقاله :
این تحقیق به منظور بررسی اثرات سطوح مختلف قطع آبیاری بر عملکرد و خصوصیات کمی و کیفی ارقام گندم در سال زراعی 97-1396 در منطقه شهریار به صورت کرت های خرد شده (اسپیلت پلات) در قالب طرح پایه بلوک های کامل تصادفی با دو عامل قطع آبیاری و ارقام در 63 تیمار و سه تکرار انجام شد. عامل اصلی تیمارهای آبیاری در سه سطح شامل؛ آبیاری معمول I0، قطع آبیاری در مرحله گلدهی (براساس مقیاس زادوکس، شروع گلدهی گندم با کد 61 (گلدهی سنبلچه های وسط سنبله) و اتمام گلدهی با کد 69 (گلدهی تمام سنبلچه های سنبله) I1، قطع آبیاری در مرحله پر شدن دانه (اولین گره قابل رویت است با کد73 تا ظهور کامل سنبله کد94) I2 و 21 رقم به عنوان عامل فرعی شامل ارقام؛ چمران، استار، سیروان، سیوند، ارگ، پارسی، برات، نارین، حیدری، افق، رخشان، بهاران، سپاهان، افلاک، میهن، زارع، گنبد، اروم، سایسون، گاسکوژن، مهرگان بود. نتایج تجزیه واریانس نشان داد که وزن هزاردانه، عملکرد دانه، عملکرد کل، هدایت روزنه ای، دمای کانوپی، پرولین برگ، پایداری غشای سلولی،گلوتن دانه، آنزیم آنتی اکسیدانت SOD و بیو مارکر تخریب MDA تحت تأثیر اثرات اصلی سطوح قطع آبیاری و ارقام و اثرات متقابل تیمار ها قرارگرفتند و اختلافات به وجود آمده در سطح یک و پنج درصد معنی دار بود. بیشترین عملکرد دانه ( kg.ha-1)10857.2، عملکرد کل 44092.8 (kg.ha-1 ) و هدایت روزنه ای 236.08 (mmolH2o.m-2.s-1 ) از تیمار آبیاری معمول و رقم رخشان و کمترین عملکرد دانه 1467.9 (kg.ha-1)، عملکرد کل11496.7 (kg.ha-1) و هدایت روزنه ای 44.81 (mmolH2o.m-2.s-1 ) از تیمار قطع آبیاری در مرحله گلدهی و رقم افق با حاصل شد. قطع آبیاری در مرحله پر شدن دانه رقم افق بیشترین دمای کانوپی (0C) 19.827 و پرولین برگ 0.994 (µg.gFw) ) و کمترین دمای کانوپی 13.126 (0C ) و پرولین برگ 0.416 (µg.gFw) پایداری غشای سلولی 171.14 (µmos.cm ) از آبیاری معمول در رقم رخشان به دست آمد. بیشترین آنزیم سوپر اکسید دیسموتاز 19.06 (U/mgprotein) و مالون دی آلدئید 40.68 (ηmol.gFw-1) مربوط به قطع آبیاری در مرحله گلدهی رقم گاسگوژن بود. نتایج نشان داد ارقام متحمل به خشکی کمتر تحت تأثیر تنش خشکی قرار گرفتند و با تولید کمتر مواد آلی مانند پرولین و آنزیم ها و بیومارکرهای تخریب، میزان عملکرد را در سطح قابل قبولی حفظ کردند.
This study was conducted to investigate the effects of different levels of cut irrigation on yield and quantitative and qualitative characteristics of cultivars wheat in the crop year 2017-18 in Shahriar region. This research was carried out as split plots design a randomized complete block with two cut irrigation and cultivars factors in 63 treatments and three replications. The main factor of irrigation treatment in three levels including: normal irrigation I0, cut irrigation in flowering stage I1 and cut irrigation in grain filling stage I2 and cultivars in 21 levels as a sub-factor including; Chamran, star, Sirvan, Sivand ,Arg, Parsi, Barat, Narin, Heidary, Ofogh, Rakhshan, Baharan, Sepahan, Aflak, Mihan, Zare, Gonhad, Orum, Saison, Gascogen and Mehregan. The results of analysis of variance showed that 1000-seed weight, grain yield, total yield, stomatal conductance, canopy temperature, leaf proline, cell membrane stability, grain gluten, SOD antioxidant enzyme and MDA degradation biomarker were affected by the main effects of irrigation levels and cultivarsand interactions were significant at the level of 5% and 1%. The highest grain yield (10857.2 kg.ha-1), total yield (44092.8 kg.ha-1) and stomatal conductance (236.08 molH2o. m2.s-1) were allocated to Normal irrigation and Rakhshan cultivar treatment. The lowest grain yield (1467.9 kg.ha-1), total yield (11496.7 kg.ha-1) and stomatal conductance (44.81 mmolH2o.m2.s) were obtained from cut irrigation at flowering stage and Ofogh cultivar treatment. However cut irrigation treatment at flowering stage and Ofogh cultivar obtained the highest canopy temperature (19.827 C), proline leaf (0.994 µg.gFw-1) and the lowest canopy temperature (13.126 C), leaf proline (0.416 µg.gFw-1) and cell membrane stability (171.14 µmos.cm) was observed from normal irrigation and Rakhshan cultivar treatment. The highest antioxidant enzyme superoxide dismutase SOD (19.06 U.mgprotein) and MDA (40.68 Ƞmol. gFw-1) were achieved from cut irrigation at flowering stage and Gasgogen cultivar treatment. The results showed that the tolerant cultivars were less affected by drought stress. And by less producing organic matter such as proline and degrading enzymes and biomarkers, they maintained their yield at an acceptable level.
· Aghaei SarBarzeh, M., and M. Roostaee. 2009. Evaluation of advanced bread wheat genotypes under drought stress in temperate and cold regions. 10th Congress of Agriculture and Plant Breeding. Karaj. Iran. (In Persian).
Ahmadi, A., M. Joudi, and M. Janmohammdi. 2009. Late defoliation and wheat yield: little evidence of post an thesis source limitation. Field Crops Research. 113: 90-93. doi:10.1016/j.fcr.2009.04.010.
Ahmed, Z., E.A. Waraich, T. Ahmad, R. Ahmad, and M.I. Awan. 2015. Yield responses of maize as influenced by supplemental foliar applied phosphorus under drought stress. International Journal of Food and Allied Sciences. 1: 45-55. doi:21620/ijfaas.2015245-55.
Ashraf, M., and P.J.C. Harris. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica. 51(2): 163-190. doi: 10.1007/s11099-013-0021-6.
Ashraf, M., N.A. Akram, F. Al-Qurainy, and M.R. Flooda. 2011. Drought tolerance: roles of organic osmolyts, growth, regulators, and mineral nutrients. Advance Agronomy. 111: 249-296. doi:10.1016/B978-0-12-387689-8.00002-3.
Balota, M., W.A. Payne, S.R. Evett, and M.D. Lazar. 2007. Canopy temperature depression sampling to assess grain yield and genotypic differentiation in winter wheat. Crop Science. 47:1518–1529. doi:2135/cropsci2006.06.0383.
Ben Amor, N., A. Jimenez, W. Megdiche, M. Lundqvist, F. Sevilla, and C. Abdelly. 2007. Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritime. Plant Biology. 49: 982-992. doi:1111/j.1672-9072.2007.00491.x.
Bewley, J.D. 2009. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology. 124: 321-329. doi:1155/2018/9464592.
Blum, A. 2005. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica. 100:77-83. doi:1023/A:1018303922482.
Chinnusamy, V. 2004. Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Abiotic stress: plant resistance through breeding and molecular approaches. Eds. Xiong, L. and J.K. Zhu. 47-107. Taylor and Francis Press, New York. doi:1201/9781482293609.
Dastoor, A., R. Asghari, and H. Shahbazi. 2014. Evaluation of wheat genotypes for yield and grain-filling rate of wheat genotypes under non stress and post an thesis drought stress conditions. Agro-Ecology. 6(3):561-570. doi:22067/jag.v6i3. 23874. (In Persian).
Du, J.Z., and G. Wang. 2010. Effects of positive interactions, size symmetry of competition and abiotic stress on self-thinning in simulated plant populations. Annuls of Botany. 106: 647-652.doi:1093/aob/mcq145.
Eivazi, A., S. Abdollahi, H. Salekdeh, I. Majidi, A. Mohamadi, and B. Pirayeshfar. 2006. Effect of drought and salinity stress on quality related traits in wheat (Triticum aestivum) varieties. Iranian Journal of Crop Science. 7: 252-267. doi:10.22077/escs.2020.2202.1550. (In Persian).
Esfandiari, E.A., M.R. Shakiba, S.A. Mahboob, H. Alyari, and S. Shahabivand. 2008. The effect of water stress on the antioxidant content, protective enzyme activities, proline content andlipid peroxidation in wheat seedling. Pakestan Journal Biological Science. 11: 1916- 1922. doi: 3923/pjbs.2008.1916.1922 .
Farshadfar, E., and R. Amiri. 2016. Assessment of genetic diversity and estimation of genetic parameters for remobilization related traits of wheat under drought conditions. 48: 139-149. doi: 10.2298/GENSR1601139F.
Gallagher, J.N., P.V. Briscoe, and B.H. Inter. 2012. Effects of drought on grain growth. 332: 141-143. doi: 10.1038/264541a0.
Ge, T.D., F.G. Sui, L.P. Bai, Y.Y. Lu, and G.S. Zhou. 2006. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China. 5: 101-105. doi: 10.3923/pjbs.2006.1916.1922.
Gonzalez, A., V. Bermejo, and B.S. Gimeno. 2010. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. Journal of Agricultural Science. 148: 319–328. doi:10.1017/ S0021859610000031.
Gooding, M.J., R.H. Ellis, P.R. Shewry, and J.D. Schofield. 2013. Effects of restricted water availability and increased temperature on grain filling, drying and quality of water wheat. Journal of Cereal Science. 37: 295-309. doi: 1006/jcrs.2013.0501].
Guttieri, M.J., J.C. Stark, K. Brien, and E. Souza. 2006. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science. 41: 327-335. doi:2135/cropsci2006.412327x.
Hong, Z., K. Lakkineni, Z. Zhang, and D.S. Verma. 2006. Removal of feedback inhibition of 1- pyrrolin -5-carboxylate synthetic results in increased proline accumulation and production of plant from osmotic stress. Plant Physiology. 122: 1129-1136. doi:1089/ars.2006.5074].
Hui, J., D.T. Bo, J. Qi, J. Dong, and C.W. Xing. 2007. Effects of post-anthesis high temperature and water stress on activities of key regulatory enzymes involved in protein formation in two wheat cultivars. Acta Agronomica Sinica. 33(12): 2021-2027. doi:6048/j.issn.1001-4330.2007.02.002.
Imam, Y. 2011. Cereal Agriculture, fourth edition. Shiraz University Press. Shiraz. doi:22067/jsw. V 0i0.43208. (In Persian).
Irigoyen, J.J., D.W. Emerich, and M. Sanchez Diz. 1993. Water stress induced changes in concentrations of proline and total soluble sugars in modulated of alfalfa (Medicago sativa). Physiology a Plantarum. 84: 55.60. doi:10.1111/j.1399-3054.1992.tb08764.x.
Izabela, M., C.M. Ilona, S. Edyta, F. Maria, G. Stanisław, and T.G. Maciej. 2013. Impact to osmotic stress on physiological and biochemical characteristics in droughts usceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum. 35(2): 451-461. doi:1007/s11738-012-1088-6.
Misra, HP., and I. Fridovich. 1972. The Generation of super oxide radical during oxidation. Journal Biology Chemestry. Volume 247, Issue 21, November 1972, Pages 6960-6962. doi:1016/S0021-9258(19)44679-6.
Mittler, R. 2009. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 4(9):132-137. doi:1016/s1360-1385(02)02312-9.
Moursi, M.A., and S.A. Salem. 2013. Effect of rates and methods of urea application chemical composition of maize. Crop Absolute. 61:12-14. doi:2174/1874331502014010036].
Najafy, M. 2013. The role of amino acids in organic farming. doi:22067/ijpr. v1394i2.35619.
Naseri, R., M. Barary, M.J. Zarea, K. Khavazi, and Z. Tahmasebi. 2016. Studying root morphological characteristics of seminal roots systems of durum and bread wheat cultivars. Journal of Crop Ecophysiology. 10 (2): 477-492. doi:22067/gsc. v17i1.69147. (In Persian).
· Nasri, M. 2004. Investigation of the interaction of nutrients and drought stress on physiological aspects of rapeseed lines and cultivars. PhD Thesis in Agriculture. Islamic Azad University, Science and Research Branch. Tehran. P200. (In Persian).
Ozturk, A., and F. Aydin. 2014. Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy and Crop Science. 231: 1092-1097. doi:1046/j.1439-037X.2003. 00080. x.
· Pazoki, A.R. 2015. The effect of zeolite consumption on the amount of biomarkers of degradation, relative leaf water content, leakage of electrolytes and canola chlorophyll under low water stress conditions. Journal of Crop Physiology.7(28): 841-847. doi:10.3923/jbs.2015.841.847. (In Persian).
Pierre, C.S., J. Petersona, A. Rossa, J. Ohma, M. Verhoerena, M. Larsona, and B. Hoefera. 2008. White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agronomy Journal. 100: 414-420. doi:3390/agronomy8110257.
Plaut, Z., B.J. Butow, C.S. Blumenthal, and C.W. Wrigley. 2014. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post anthesis water deficit and evaluated temperature. Field Crop Research. 86: 185-198. doi:1016/j.fcr.2003.08.005.
Poor Yusuf, M., and A.R. Yousefi. 2011. Investigation of the effect of row spacing on biomass and yield of wheat beech, The first national congress of modern agricultural sciences and technologies. (COI): MAST01_1154. doi::10.22077/escs.2011.1893.1457.
Rezaeimoradali, M., A.R. Avazii, S. Mohammadi, and Sh. ShirAlizadeh. 2013. Effect of drought stress on dry matter remobilization and grain yield of winter bread wheat genotypes. Iranian Journal of Crop Sciences. (3)15: 262-276. (In Persian). doi:22099/iar.2022.42353.1469.
Ribaut, J.M., J. Betran, P. Monneveux, and T. Setter. 2012. Drought tolerance in maize. In: Bennetzen, J.L., S.C. Hake. (Eds.), Handbook of Maize: Its Biology. Springer, New York, pp. 11– 34. doi:1007/978-0-387-79418-1_16.
Royo, C., M. Abaza, R. Blanco, and L.F. Garcia del Moral. 2010. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal of Plant Physiology. 69: 1051–1059. doi::1071/PP99113.
Sairam, R.K., K.V. Rao, and G.C. Srivastava. 2003. Differential response of wheat genotypes tolongterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science. 163(5): 1037-1046. doi:1590/1678-4685-GMB-2015-0109
Sanchez-Rodrıguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, M.A. Rosales, L. Romero, and J.M. anduiz. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science. 178:30–40. doi:1016/j.plantsci.2009.10.001.
Sankar, B., C. Abdul Jaleel, P. Manivannan, A. Kishore Kumar, R. Somasundaram, and R. Panneerselvam. 2008. Relative efficiency of water use in five varieties of (Abelmo schusesculentus Moench) under water limited conditions. Colloids and Surfaces B: Biointerfaces. 62: 125-129. doi:10.1016/j.colsurfb.2007.09.025. Epub 2008 Sep 29.
Sayre, K.D. 2009. Methods for estimating wheat yield components from hand harvest plots. Wheat Special report, CIMMYT press. doi:1017/S0014479711000809.
Siddique, K.H.M., and B.R. Whan. 2004. Ear: stem ratio in breeding population of wheat: significance for yield improvement. Euphytica .73:241-254. doi:1007/BF00036703.
Soleymani, A. 2016. Effect of drought stress on yield and yield components of wheat by ET-HS model. Environmental Stresses in Crop Sciences. 9(3):205-215. doi:22077/escs.2016.412.
Steven, A.K., and M.H. Joseph. 1978. Lipid peroxides in sample as measured by liquid chromatic graphic separation. Elin. Chemistry. 32: 217-220. doi:1016/0003-2697(83)90612-7].
Tabatabaei, A., Ansari. 2019. Evaluation of Germination and Biochemical Changes of Two Wheat (Triticum aestivum) Cultivars Under Pb (NO3)2 Stress. Volume 5, Issue 2. Iranian Journal Seed Research. 5(2): 15-28. doi:10.29252/yujs.5.2.15.
Tatar, Ö., H. Brück, and F. Asch. 2016. Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage. Journal of Agronomy and Crop Science. 202: 292-299. doi:3390/agronomy13020336.
Verma, K.K., M. Singh, R.K. Gupta, and C.I. Verma. 2014. Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzyme sand growth responses of Jatropha cruces during soil flooding. Turkish Journal of Botany. 38(1):130-140. doi:3906/bot-1212-32.
Vinocur, B., and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology. 16: 123-132. doi:1016/j.copbio.2005.02.001.
Yoshiba, Y., T. Kiyosue, K. Nakashima, K. Kamayushi-Shino Zaki, and K. Shinozaki. 2009. Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology. 38: 1095-1102. doi: 1093/oxfordjournals.pcp.a029093.
Zhou, J., L. Fang, X. Wang, L. Guo, and L. Huang. 2013. Effects of smoke-water on photosynthetic characteristics of isatisindigotica seedlings. Sustainable Agriculture Research. 2: 24-28. doi:10.5539/sar.v2n2p24.
_||_· Aghaei SarBarzeh, M., and M. Roostaee. 2009. Evaluation of advanced bread wheat genotypes under drought stress in temperate and cold regions. 10th Congress of Agriculture and Plant Breeding. Karaj. Iran. (In Persian).
Ahmadi, A., M. Joudi, and M. Janmohammdi. 2009. Late defoliation and wheat yield: little evidence of post an thesis source limitation. Field Crops Research. 113: 90-93. doi:10.1016/j.fcr.2009.04.010.
Ahmed, Z., E.A. Waraich, T. Ahmad, R. Ahmad, and M.I. Awan. 2015. Yield responses of maize as influenced by supplemental foliar applied phosphorus under drought stress. International Journal of Food and Allied Sciences. 1: 45-55. doi:21620/ijfaas.2015245-55.
Ashraf, M., and P.J.C. Harris. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica. 51(2): 163-190. doi: 10.1007/s11099-013-0021-6.
Ashraf, M., N.A. Akram, F. Al-Qurainy, and M.R. Flooda. 2011. Drought tolerance: roles of organic osmolyts, growth, regulators, and mineral nutrients. Advance Agronomy. 111: 249-296. doi:10.1016/B978-0-12-387689-8.00002-3.
Balota, M., W.A. Payne, S.R. Evett, and M.D. Lazar. 2007. Canopy temperature depression sampling to assess grain yield and genotypic differentiation in winter wheat. Crop Science. 47:1518–1529. doi:2135/cropsci2006.06.0383.
Ben Amor, N., A. Jimenez, W. Megdiche, M. Lundqvist, F. Sevilla, and C. Abdelly. 2007. Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritime. Plant Biology. 49: 982-992. doi:1111/j.1672-9072.2007.00491.x.
Bewley, J.D. 2009. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology. 124: 321-329. doi:1155/2018/9464592.
Blum, A. 2005. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica. 100:77-83. doi:1023/A:1018303922482.
Chinnusamy, V. 2004. Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Abiotic stress: plant resistance through breeding and molecular approaches. Eds. Xiong, L. and J.K. Zhu. 47-107. Taylor and Francis Press, New York. doi:1201/9781482293609.
Dastoor, A., R. Asghari, and H. Shahbazi. 2014. Evaluation of wheat genotypes for yield and grain-filling rate of wheat genotypes under non stress and post an thesis drought stress conditions. Agro-Ecology. 6(3):561-570. doi:22067/jag.v6i3. 23874. (In Persian).
Du, J.Z., and G. Wang. 2010. Effects of positive interactions, size symmetry of competition and abiotic stress on self-thinning in simulated plant populations. Annuls of Botany. 106: 647-652.doi:1093/aob/mcq145.
Eivazi, A., S. Abdollahi, H. Salekdeh, I. Majidi, A. Mohamadi, and B. Pirayeshfar. 2006. Effect of drought and salinity stress on quality related traits in wheat (Triticum aestivum) varieties. Iranian Journal of Crop Science. 7: 252-267. doi:10.22077/escs.2020.2202.1550. (In Persian).
Esfandiari, E.A., M.R. Shakiba, S.A. Mahboob, H. Alyari, and S. Shahabivand. 2008. The effect of water stress on the antioxidant content, protective enzyme activities, proline content andlipid peroxidation in wheat seedling. Pakestan Journal Biological Science. 11: 1916- 1922. doi: 3923/pjbs.2008.1916.1922 .
Farshadfar, E., and R. Amiri. 2016. Assessment of genetic diversity and estimation of genetic parameters for remobilization related traits of wheat under drought conditions. 48: 139-149. doi: 10.2298/GENSR1601139F.
Gallagher, J.N., P.V. Briscoe, and B.H. Inter. 2012. Effects of drought on grain growth. 332: 141-143. doi: 10.1038/264541a0.
Ge, T.D., F.G. Sui, L.P. Bai, Y.Y. Lu, and G.S. Zhou. 2006. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China. 5: 101-105. doi: 10.3923/pjbs.2006.1916.1922.
Gonzalez, A., V. Bermejo, and B.S. Gimeno. 2010. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. Journal of Agricultural Science. 148: 319–328. doi:10.1017/ S0021859610000031.
Gooding, M.J., R.H. Ellis, P.R. Shewry, and J.D. Schofield. 2013. Effects of restricted water availability and increased temperature on grain filling, drying and quality of water wheat. Journal of Cereal Science. 37: 295-309. doi: 1006/jcrs.2013.0501].
Guttieri, M.J., J.C. Stark, K. Brien, and E. Souza. 2006. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science. 41: 327-335. doi:2135/cropsci2006.412327x.
Hong, Z., K. Lakkineni, Z. Zhang, and D.S. Verma. 2006. Removal of feedback inhibition of 1- pyrrolin -5-carboxylate synthetic results in increased proline accumulation and production of plant from osmotic stress. Plant Physiology. 122: 1129-1136. doi:1089/ars.2006.5074].
Hui, J., D.T. Bo, J. Qi, J. Dong, and C.W. Xing. 2007. Effects of post-anthesis high temperature and water stress on activities of key regulatory enzymes involved in protein formation in two wheat cultivars. Acta Agronomica Sinica. 33(12): 2021-2027. doi:6048/j.issn.1001-4330.2007.02.002.
Imam, Y. 2011. Cereal Agriculture, fourth edition. Shiraz University Press. Shiraz. doi:22067/jsw. V 0i0.43208. (In Persian).
Irigoyen, J.J., D.W. Emerich, and M. Sanchez Diz. 1993. Water stress induced changes in concentrations of proline and total soluble sugars in modulated of alfalfa (Medicago sativa). Physiology a Plantarum. 84: 55.60. doi:10.1111/j.1399-3054.1992.tb08764.x.
Izabela, M., C.M. Ilona, S. Edyta, F. Maria, G. Stanisław, and T.G. Maciej. 2013. Impact to osmotic stress on physiological and biochemical characteristics in droughts usceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum. 35(2): 451-461. doi:1007/s11738-012-1088-6.
Misra, HP., and I. Fridovich. 1972. The Generation of super oxide radical during oxidation. Journal Biology Chemestry. Volume 247, Issue 21, November 1972, Pages 6960-6962. doi:1016/S0021-9258(19)44679-6.
Mittler, R. 2009. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 4(9):132-137. doi:1016/s1360-1385(02)02312-9.
Moursi, M.A., and S.A. Salem. 2013. Effect of rates and methods of urea application chemical composition of maize. Crop Absolute. 61:12-14. doi:2174/1874331502014010036].
Najafy, M. 2013. The role of amino acids in organic farming. doi:22067/ijpr. v1394i2.35619.
Naseri, R., M. Barary, M.J. Zarea, K. Khavazi, and Z. Tahmasebi. 2016. Studying root morphological characteristics of seminal roots systems of durum and bread wheat cultivars. Journal of Crop Ecophysiology. 10 (2): 477-492. doi:22067/gsc. v17i1.69147. (In Persian).
· Nasri, M. 2004. Investigation of the interaction of nutrients and drought stress on physiological aspects of rapeseed lines and cultivars. PhD Thesis in Agriculture. Islamic Azad University, Science and Research Branch. Tehran. P200. (In Persian).
Ozturk, A., and F. Aydin. 2014. Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy and Crop Science. 231: 1092-1097. doi:1046/j.1439-037X.2003. 00080. x.
· Pazoki, A.R. 2015. The effect of zeolite consumption on the amount of biomarkers of degradation, relative leaf water content, leakage of electrolytes and canola chlorophyll under low water stress conditions. Journal of Crop Physiology.7(28): 841-847. doi:10.3923/jbs.2015.841.847. (In Persian).
Pierre, C.S., J. Petersona, A. Rossa, J. Ohma, M. Verhoerena, M. Larsona, and B. Hoefera. 2008. White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agronomy Journal. 100: 414-420. doi:3390/agronomy8110257.
Plaut, Z., B.J. Butow, C.S. Blumenthal, and C.W. Wrigley. 2014. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post anthesis water deficit and evaluated temperature. Field Crop Research. 86: 185-198. doi:1016/j.fcr.2003.08.005.
Poor Yusuf, M., and A.R. Yousefi. 2011. Investigation of the effect of row spacing on biomass and yield of wheat beech, The first national congress of modern agricultural sciences and technologies. (COI): MAST01_1154. doi::10.22077/escs.2011.1893.1457.
Rezaeimoradali, M., A.R. Avazii, S. Mohammadi, and Sh. ShirAlizadeh. 2013. Effect of drought stress on dry matter remobilization and grain yield of winter bread wheat genotypes. Iranian Journal of Crop Sciences. (3)15: 262-276. (In Persian). doi:22099/iar.2022.42353.1469.
Ribaut, J.M., J. Betran, P. Monneveux, and T. Setter. 2012. Drought tolerance in maize. In: Bennetzen, J.L., S.C. Hake. (Eds.), Handbook of Maize: Its Biology. Springer, New York, pp. 11– 34. doi:1007/978-0-387-79418-1_16.
Royo, C., M. Abaza, R. Blanco, and L.F. Garcia del Moral. 2010. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal of Plant Physiology. 69: 1051–1059. doi::1071/PP99113.
Sairam, R.K., K.V. Rao, and G.C. Srivastava. 2003. Differential response of wheat genotypes tolongterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science. 163(5): 1037-1046. doi:1590/1678-4685-GMB-2015-0109
Sanchez-Rodrıguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, M.A. Rosales, L. Romero, and J.M. anduiz. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science. 178:30–40. doi:1016/j.plantsci.2009.10.001.
Sankar, B., C. Abdul Jaleel, P. Manivannan, A. Kishore Kumar, R. Somasundaram, and R. Panneerselvam. 2008. Relative efficiency of water use in five varieties of (Abelmo schusesculentus Moench) under water limited conditions. Colloids and Surfaces B: Biointerfaces. 62: 125-129. doi:10.1016/j.colsurfb.2007.09.025. Epub 2008 Sep 29.
Sayre, K.D. 2009. Methods for estimating wheat yield components from hand harvest plots. Wheat Special report, CIMMYT press. doi:1017/S0014479711000809.
Siddique, K.H.M., and B.R. Whan. 2004. Ear: stem ratio in breeding population of wheat: significance for yield improvement. Euphytica .73:241-254. doi:1007/BF00036703.
Soleymani, A. 2016. Effect of drought stress on yield and yield components of wheat by ET-HS model. Environmental Stresses in Crop Sciences. 9(3):205-215. doi:22077/escs.2016.412.
Steven, A.K., and M.H. Joseph. 1978. Lipid peroxides in sample as measured by liquid chromatic graphic separation. Elin. Chemistry. 32: 217-220. doi:1016/0003-2697(83)90612-7].
Tabatabaei, A., Ansari. 2019. Evaluation of Germination and Biochemical Changes of Two Wheat (Triticum aestivum) Cultivars Under Pb (NO3)2 Stress. Volume 5, Issue 2. Iranian Journal Seed Research. 5(2): 15-28. doi:10.29252/yujs.5.2.15.
Tatar, Ö., H. Brück, and F. Asch. 2016. Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage. Journal of Agronomy and Crop Science. 202: 292-299. doi:3390/agronomy13020336.
Verma, K.K., M. Singh, R.K. Gupta, and C.I. Verma. 2014. Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzyme sand growth responses of Jatropha cruces during soil flooding. Turkish Journal of Botany. 38(1):130-140. doi:3906/bot-1212-32.
Vinocur, B., and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology. 16: 123-132. doi:1016/j.copbio.2005.02.001.
Yoshiba, Y., T. Kiyosue, K. Nakashima, K. Kamayushi-Shino Zaki, and K. Shinozaki. 2009. Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell Physiology. 38: 1095-1102. doi: 1093/oxfordjournals.pcp.a029093.
Zhou, J., L. Fang, X. Wang, L. Guo, and L. Huang. 2013. Effects of smoke-water on photosynthetic characteristics of isatisindigotica seedlings. Sustainable Agriculture Research. 2: 24-28. doi:10.5539/sar.v2n2p24.