Phytochemical characterization and biological properties of Ocimum sanctum L. and its active phytocomponents: Eugenol and β-caryophyllene
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationKrupali Trivedi 1 , Nilam Parmar 2 , Khairah Ansari 3 , Vaibhavi Srivastava 4 , Nishi Modi 5 , Devendrasinh Jhala 6
1 - Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
2 - Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
3 - Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
4 - Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
5 - Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
6 - Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
Keywords: Antioxidant activity, β-Caryophyllene, Cytotoxicity, Eugenol, Molecular docking, Ocimum sanctum L.,
Abstract :
This study explored the pharmacognostical and biological properties of Ocimum sanctum L., focusing on its hydromethanolic (HME) and aqueous (AQE) extracts, as well as the bioactive compounds eugenol (EUG) and β-caryophyllene (BCP). Phytochemical analysis revealed a diverse range of compounds, with HME showing higher levels of phenolics, flavonoids, and tannins compared to AQE. Both extracts exhibited antioxidant activity, while EUG and BCP displayed significant cytotoxicity against MCF-7 cells. Molecular docking studies indicated that EUG has potential binding to catalase. The findings of this study underscore O. sanctum as a valuable source of bioactive compounds with potential antioxidant and anticancer properties. Notably, the extraction method played a crucial role in determining the phytochemical profile. However, further investigations are necessary to fully understand the mechanisms and therapeutic applications of EUG and BCP, particularly as potential catalase inhibitors.
Acuña, U.M., Wittwer, J., Ayers, S., Pearce, C.J., Oberlies, N.H., De Blanco, E.J.C., 2012. Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res. 32(7), 2665-2671.
Anandjiwala, S., Kalola, J., Rajani, M., 2006. Quantification of eugenol, luteolin, ursolic acid, and oleanolic acid in black (Krishna Tulasi) and green (Sri Tulasi) varieties of Ocimum sanctum Linn. using high-performance thin-layer chromatography. J AOAC Int. 89(6), 1467-1474.
Anita Margret, A., Maheswari, R., Sherlin Rosita, A., Jesucastin, E., 2022. Discerning the regulated wound healing potential of Ocimum americanum by probing the rosmarinic acid content-a paradigm on zebrafish caudal fin regeneration. Trends Phytochem. Res. 6(2), 106-115.
Badami, S., Gupta, M.K., Suresh, B., 2003. Antioxidant activity of the ethanolic extract of Striga orobanchioides. J. Ethnopharmacol. 85(2), 227-230.
Basak, P., Mallick, P., Mazumder, S., Verma, A.S., 2014. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of Tulsi (Ocimum sanctum) leaves. Adv. Pharmacol. Toxicol. 15(1), 19-29.
Bhalla, Y., Gupta, V.K., Jaitak, V., 2013. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 93(15), 3643-3653.
Blois, M.S., 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199-1200.
Brianna, Lee, S.H., 2023. Chemotherapy: How to reduce its adverse effects while maintaining the potency? Med. Oncol. 181(4617), 1199-1200.
de Fernandez, M. de los A., SotoVargas, V.C., Silva, M.F., 2014. Phenolic compounds and antioxidant capacity of monovarietal olive oils produced in Argentina. J. Am. Oil Chem. Soc. 91(12), 2021-2033.
Devendran, G., Balasubramanian, U., 2011. Qualitative phytochemical screening and GC-MS analysis of Ocimum sanctum L. leaves. Asian J. Plant Sci. Res. 1(4), 44-48.
Di Giacomo, S., Di Sotto, A., Mazzanti, G., Wink, M., 2017. Chemosensitizing properties of β-caryophyllene and β-caryophyllene oxide in combination with doxorubicin in human cancer cells. Anticancer Res. 37(3), 1191-1196.
Di Giacomo, S., Mazzanti, G., Di Sotto, A., 2016. Mutagenicity of cigarette butt waste in the bacterial reverse mutation assay: The protective effects of β-caryophyllene and β-caryophyllene oxide. Environ. toxicol. 31(11), 1319-1328.
Farzaneh, V., Carvalho, I.S., 2015. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crops Prod. 65(2015), 247-258.
Fresco, P., Borges, F., Diniz, C., Marques, M.P.M., 2006. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 26(6), 747-766.
Gomathi, D., Ravikumar, G., Kalaiselvi, M., Devaki, K., Uma, C., 2014. Antioxidant activity and functional group analysis of Evolvulus alsinoides. Chin. J. Nat. Med. 12(11), 827-832.
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126(1), 131-138.
Greenwell, M., Rahman, P., 2015. Medicinal plants: Their use in anticancer treatment. Int. J. Pharma. Sci. Res. 6(10), 4103-4112.
Gülçin, İ., 2011. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food. 14(9), 975-985.
Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A., Ozkan, H., 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 103(4), 1449-1456.
Harborne, J.B., 1984. Methods of Plant Analysis, in: Harborne, J.B. (Ed.). Phytochemical Methods. Springer, Dordrecht. pp. 1-36.
Hashemi-Moghaddam, H., Mohammadhosseini, M., Basiri, M., 2015. Optimization of microwave assisted hydrodistillation on chemical compositions of the essential oils from the aerial parts of Thymus pubescens and comparison with conventional hydrodistllation. J. Essent. Oil-Bear. Plants 18(4), 884-893.
Hassan, I.A., Nasiru, I.A., Malut, A.M., Ali, A.S., 2015. Phytochemical studies and thin layer chromatography of leaves and flower extracts of Senna siamea Lam. for possible biomedical applications. J. Pharmacogn. Phytother. 7(3), 18-26.
Kang, M.Y., Kim, H.-B., Piao, C., Lee, K.H., Hyun, J.W., Chang, I.-Y., You, H.J., 2013. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ. 20(1), 117-129.
Kaushal, N., Rao, S., Ghanghas, P., Abraham, S., George, T., D’souza, S., Mathew, J.M., Chavali, J., Swamy, M.K., Baliga, M.S., 2018. Usefulness of Ocimum sanctum Linn. in Cancer Prevention: An Update, in: Akhtar, M., Swamy, M. (Eds.) Anticancer Plants: Properties and Application. Springer, Singapore. Vol. 1, pp. 415-429.
Kianasab, M.R., Mohammadhosseini, M., Nekoei, M., Mahdavi, B., Baheri, T., 2023. Screening of the compositions of essential oils and volatiles of Perovskia abrotanoides Karel. along with antioxidant, antibacterial and cytotoxic impacts of its methanol extract. Nat. Prod. Res., 1-5.
Lalla, J., Hamrapurkar, P., Singh, A., 2007. Quantitative HPTLC analysis of the eugenol content of leaf powder and a capsule formulation of Ocimum sanctum. JPC-J. Planar Chromat.-Modern TLC. 20(2), 135-138.
Lam, S.N., Neda, G.D., Rabeta, M.S., 2018. The anticancer effect of Ocimum tenuiflorum leaves. Food Res. 2(2), 154-162.
Madike, L.N., Takaidza, S., Pillay, M., 2017. Preliminary phytochemical screening of crude extracts from the leaves, stems, and roots of Tulbaghia violacea. Int. J. Pharmacogn. Phytochem. Res. 9(10), 1300-1308.
Mandal, S., Das, D.N., De, K., Ray, K., Roy, G., Chaudhuri, S.B., Sahana, C.C., Chowdhuri, M.K., 1993. Ocimum sanctum Linn-A study on gastric ulceration and gastric secretion in rats. Indian J. Physiol. Pharmacol. 37(1993), 91-91.
Mohammadhosseini, M., Frezza, C., Venditti, A., Akbarzadeh, A., 2019. Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 23, 1828-1842.
Mohammadhosseini, M., Venditti, A., Akbarzadeh, A., 2019. The genus Perovskia Kar.: Ethnobotany, chemotaxonomy and phytochemistry: A review. Toxin Rev. 40(4), 484-505.
Mondal, P., 2014. Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. J. Microbiol. Exp. 1(1), 1-6.
Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1), 55-63.
Omara, T., Kiprop, A.K., Ramkat, R.C., Cherutoi, J., Kagoya, S., Moraa Nyangena, D., Azeze Tebo, T., Nteziyaremye, P., Nyambura Karanja, L., Jepchirchir, A., 2020. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid. Based Complementary Altern. Med. 2020(2020), 1-26.
Organisation mondiale de la santé (Ed.), 2018. World health statistics 2018: Monitoring health for the SDGs sustainable development goals. World health organization, Geneva.
Pandey, M.M., Rastogi, S., Rawat, A.K.S., 2013. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complementary Altern. Med. 2013, 1-12.
Pehlivan, F. E, 2017. Vitamin C: An Antioxidant Agent. Vitamin C, 2, pp. 23-35.
Poulsen, H.E., Prieme, H., Loft, S., 1998. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev. 7(1), 9-16.
Pourmorad, F., Hosseinimehr, S.J., Shahabimajd, N., 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 5(11), 1142-1145.
Prakash, P., Gupta, N., 2005. Therapeutic uses of Ocimum sanctum Linn. (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. pharmacol. 49(2), 125-131.
Ramteke, C., Chakrabarti, T., Sarangi, B.K., Pandey, R.-A., 2013. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem. 2013(2013), 1-7.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radic. Biol. Med. 26(9-10), 1231-1237.
Rompelberg, C.J.M., Evertz, S., Bruijntjesrozier, G., Van den Heuvel, P.D., Verhagen, H., 1996. Effect of eugenol on the genotoxicity of established mutagens in the liver. Food chem. Toxicol. 34(1), 33-42.
Sarkar, S., Hoda, M.U., Das, S., 2023. Anti-melanogenic, antioxidant potentialities and metabolome classification of six Ocimum species: Metabolomics and in-silico approaches. Trends Phytochem. Res. 7(1), 30-50.
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K.M., Latha, L.Y., 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J. Tradit. Complement. Altern. Med. 8(1), 1-10.
Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144-158.
Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani, L., Poulson, B.G., Emwas, A.-H., Jaremko, M., 2020. Important flavonoids and their role as a therapeutic agent. Molecules 25(22), 1-39.
Vidhya, N., Devaraj, S.N., 2011. Induction of apoptosis by eugenol in human breast cancer cells. Indian J. Exp. Biol. 49(11), 871-878.
Yen, G.-C., Hsieh, P.-P., 1995. Antioxidative activity and scavenging effects on active oxygen of xylose-lysine maillard reaction products. J. Sci. Food Agric. 67(3), 415-420.
Zheng, G.-Q., Kenney, P.M., Lam, L.K., 1992. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J. Nat. prod. 55(7), 999-1003.