مفهوم سازی خط مشی گذاری هوشمند در دانشگاه آزاد اسلامی
محورهای موضوعی : مدیریت منابع انسانی
حسین مهدی رکن آبادی
1
,
محسن عامری شهرابی
2
*
,
مریم ادیب زاده
3
,
ندا نفری
4
1 - گروه مدیریت،تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران
2 - گروه مدیریت،تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران
3 - گروه مدیریت،تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران
4 - گروه مدیریت،تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران
کلید واژه: خطمشیگذاری, خطمشیگذاری هوشمند, دانشگاه آزاد اسلامی ,
چکیده مقاله :
زمینه هدف: امروزه آموزش عالی با مسائل گوناگونی در حوزه های کیفیت آموزش، شیوههاي جذب منابع مالی، بیکاري دانشآموختگان و .. روبرو است. بهمنظور پاسخگویی به این مسائل میتوان از خطمشیگذاري هوشمند و صحیح بهره برد. هدف این پژوهش، مفهومسازی خطمشیگذاری هوشمند در دانشگاه آزاد اسلامی می باشد.
روش تحقیق: این پژوهش از نوع توصیفی-تحلیلی و به روش تحلیل محتوا انجام شد. برای گردآوری اطلاعات از روشهای اسنادی و مصاحبه با 27 نفر از خبرگان با روش نمونه گیری نظری تا اشباع نظری انجام شد که شامل مدیران ارشد و عالی وزارت آموزش عالی و دانشگاه آزاد اسلامی و ... بودند. تحلیل دادهها با بهرهگیری از تکنیک کدگذاری باز، کدگذاری محوری و کدگذاری انتخابی انجام گردید. برای رتبه بندی مولفه ها، از روشPromethee استفاده شد.
یافته ها: یافته ها نشان دادکه پنج مولفه مدیریت و برنامهریزی هوشمند، کیفیت و ارزیابی هوشمند، آموزش و توسعه منابع انسانی هوشمند، مشارکت و شفافیت هوشمند، و پژوهش و نوآوری هوشمند در تحقق خطمشیگذاری هوشمند نقش کلیدی دارند. از میان این مؤلفهها، آموزش و توسعه منابع انسانی هوشمند به عنوان مهمترین مؤلفه شناسایی شد. همچنین مولفه های دادهمحوری و فناوریمحوری بهعنوان اصول بنیادین در این رویکرد مطرح شدند.
نتیجه گیری: رویکرد طراحی شده میتواند بهعنوان یک چارچوب کارآمد برای بازطراحی سیاستها و برنامههای آموزشی در دانشگاهها به کار گرفته شود.
Background and Objective: Currently, higher education institutions are contending with numerous challenges, including concerns related to academic quality, strategies for securing financial resources, and graduate unemployment. To address these issues effectively, the implementation of intelligent and well-informed policymaking is recommended. The primary objective of this research is to conceptualize smart policymaking within the context of Islamic Azad University.
Research Method: This study was conducted employing a descriptive-analytical approach through the utilization of content analysis methodology. Data collection was carried out via documentary review and semi-structured interviews with twenty-seven experts, employing theoretical sampling until achieving theoretical saturation. The participant cohort comprised senior and top executives from the Ministry of Higher Education, the Islamic Azad University, and other relevant institutions. Data analysis was performed using open coding, axial coding, and selective coding techniques. The Promethee method was applied to establish the ranking of the components.
Findings: The results indicated that five components—namely, Smart Management and Planning, Smart Quality and Evaluation, Smart Human Resource Training and Development, Smart Participation and Transparency, and Smart Research and Innovation—are integral to the successful implementation of smart policymaking. Among these, Smart Human Resource Training and Development was identified as the most critical component. Additionally, data-centric and technology-centric elements were posited as fundamental principles underlying this approach.
Conclusion: The proposed methodology may serve as an effective framework for the reformulation of educational policies and programs within higher education institutions.
Abbasi, T., & Beigi, V. (2016). Explaining the challenges of implementing public policies in the field of science, research and technology. Science and Technology Policy, 9(3), 1–12 [In Persian]. 20.1001.1.20080840.1395.9.3.2.8
Bagheri, M. R., & Pour-Ezzat, A. A. (2013). Presenting a hybrid model for policy-making in the university field. Majles and Strategy, 20(74), 165–199 [In Persian]. https://civilica.com/doc/1186435/
Berryhill, J., Heang, K. K., Clogher, R., & McBride, K. (2019). Hello, world! Artificial intelligence and its use in the public sector. OECD Working Paper. https://www.oecd-ilibrary.org/governance/hello-world_726fd39d-en
Boswell, J., Corbett, J., & Rhodes, R. A. W. (2019). The art and craft of comparison: From public policy to global health. Cambridge University Press.
CERP. (2018). Policy formulation and implementation as a design challenge. Harvard. https://www.psdf.org.pk/wp-content/uploads/2020/03/SPDI-PSDF-Vocation-Skills-Flyer-1.pdf
Choupani, H., Hayat, A. A., & Zare Khalili, M. (2011). Quality assessment in the Iranian higher education system: Obstacles, challenges and solutions. First International Conference on Management, Foresight, Entrepreneurship and Industry in Higher Education, Sanandaj [In Persian] . https://civilica.com/doc/168155/
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data: Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Dwivedi, Y. K., et al. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Dye, T. (2015). Understanding public policy (1st ed.). Pearson Prentice Hall.
ENRD. (2018). Smart villages portal. European Network for Rural Development (ENRD). https://enrd.ec.europa.eu/smart-and-competitive-ruralareas/smart-villages/smart-villages-portal_en
Farestkhah, M. (2009). Iranian university and the quality issue. Aghah Publications [In Persian].
Flora, S. M. L., & Kamoche, K. (2022). Talent management, identity construction and the burden of elitism: The case of management trainees in Hong Kong. Human Relations, 75(5), 817–841. https://doi.org/10.1177/0018726721996778
Gagné, F. (2006). Understanding the complex choreography of talent development through DMGT-based analysis. In International Handbook of Giftedness and Talent (pp. 67–79). https://doi.org/10.1016/B978-008043796-5/50005-X
Ghimire, A., & Edwards, J. (2024). From guidelines to governance: The ethics of AI in higher education policy. arXiv preprint.
Grigorov, G. (2020). Models and approaches for motivation, recruitment and retention of military personnel in the British armed forces. International Scientific Journal Security & Future, 8(3), 27–30. https://portal.issn.org/resource/issn/2535-082X
Haque, F. (2023). Retention of tech employees in India: Lessons from the extant literature. The Learning Organization, 31(4), 585–629. https://doi.org/10.1108/TLO-03-2023-0050
Howlett, M., Ramesh, M., & Perl, A. (2020). Studying public policy: Policy cycles and policy subsystems (5th ed.). Oxford University Press.
Jahn, P., & Wegrich, K. (2020). Theories of policy change: A policy process reader. Edward Elgar Publishing.
Janssen, M., Hartog, M. H. D., Matheus, R., Ding, A. Y., & Kuk, G. (2020). Will algorithms blind people? The effect of explainable AI and decision-makers' experience on AI-supported decision-making in government. Social Science Computer Review, 40(2), 478–493. https://doi.org/10.1177/0894439320980118
Jensen, A., Dzansi, J., Lagakos, D., & Telli, H. (2022). Technology and local state capacity: Evidence from Ghana. HKS Faculty Research Working Paper Series.
Jetten, J., Mols, F., & Selvanathan, H. (2020). How economic inequality fuels the rise and persistence of the yellow vest movement. International Review of Social Psychology, 33(1). http://dx.doi.org/10.5334/irsp.356
Karimkhani, H., Delkhosh Kasmaei, A., & Oladian, M. (2010). Identifying components for improving the policy-making process in the higher education system of the country. Journal of Education Development Jundishapur Ahvaz, 11(3), 372–385 [In Persian]. https://doi.org/10.22118/edc.2020.227156.1313
Khorasani, A. (2016). Internationalization of higher education in Tehran. Shahid Beheshti University Press.
Kotnik, Ž., Umek, L., Kovač, P., Stanimirović, D., & Vintar, M. (2020). Analysis of the key factors for successful public policy implementation: A qualitative study in Slovenia. Danube, 11(2), 113–140. https://sciendo.com/article/10.2478/danb-2020-0007
OECD. (2019). Linking Indigenous Communities with Regional Development. OECD Publishing. https://doi.org/10.1787/3203c082-en
OECD. (2020). An ecosystem approach to knowledge exchange and collaboration. OECD.
Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10. https://doi.org/10.1017/dap.2024.3
Pechmann, P., & Haase, S. (2022). How policy makers employ the term quality in higher education policymaking. Scandinavian Journal of Educational Research, 66(2), 355–366. https://doi.org/10.1080/00313831.2020.1869081
Peters, B. G. (2021). Advanced introduction to public policy. Edward Elgar Publishing.
Prakerja. (2021). Policy Brief: Pre-employment card program (Edition 2).
Pylak, K., Deegan, J., & Broekel, T. (2025). Smart specialisation or smart following? A study of policy mimicry in priority domain selection. Regional Studies, 1–14. DOI:10.1080/00343404.2024.2429626
Sabatier, P. A., & Weible, C. M. (2014). Theories of the policy process (3rd ed.). Westview Press.