اثرات هم افزایی لپتین با هیستامین، ملانوکورتین و کورتیکوتروپین بر اخذ غذا در جوجه های گوشتی
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیمصطفی شالیکار 1 , مرتضی زنده دل 2 , بیتا وزیر 3 , احمد اصغری 4
1 - گروه علوم پایه، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - بخش فیزیولوژی، گروه علوم پایه، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
3 - گروه علوم پایه، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: لپتین, اخذ غذا, ملانوکورتین, جوجه, هیستامین, کورتیکوتروپین,
چکیده مقاله :
زمینه و هدف: تعدیل اشتها مجموعه ای از مکانیسم های پیچیده فیزیولوژیک است که نواحی مختلف دستگاه عصبی مرکزی را تحت تاثیر قرار میدهد. سیستمهای ملانوکورتینی، کورتیکوتروپینی و هیستامینرژیک نقش مهمی در کنترل مرکزی اخذ غذا در پرندگان ایفا میکنند. از سوی دیگر، لپتین اخذ غذا در پرندگان را کاهش می دهد. مطالعه حاضر به منظور بررسی اثرات سینرژیستی سیستمهای ملانوکورتینی، کورتیکوتروپینی و هیستامینرژیک با لپتین بر رفتار تغذیهای در جوجه های گوشتی 5 روزه صورت گرفته است.مواد و روش ها: تعداد 132 جوجه بطور تصادفی در سه گروه آزمونی تقسیم شدند. هر آزمون شامل یک گروه کنترل و 3 گروه تیمار بود. در تمام آزمایشات، پرندگان پس از 3 ساعت محرومیت غذایی تزریق داخل بطنی مغزی، محلول رقیق کننده یا محلول دارویی را دریافت کردند. در آزمون اول: سرم فیزیولوژی، لپتین(5/2 میکروگرم)، هیستامین(75 نانومول) و لپتین به همراه هیستامین تزریق شد. آزمونهای بعدی مطابق با آزمون اول انجام شدند، با این تفاوت که در آزمون دوم، به جای هیستامین، MTII (آگونیست گیرندههای MC3/MC4 ملانوکورتینی) (45/2 پیکومول) و در آزمایش سوم، Urocortin (آگونیست گیرندههای CRF1/CRF2 کورتیکوتروپینی) (1/0میکروگرم) به تنهایی و همراه با لپتین تزریق شدند. سپس پرندگان بدون محدودیت به آب و غذا دسترسی داشتند و مصرف غذا (گرم) بر اساس درصد وزن بدن اندازه گیری شد.نتایج: نتایج نشان داد که تزریق همزمان لپتین و هیستامین، لپتین و MTII و همچنین لپتین و Urocortin به کاهش معنیدار اخذ غذا منجر شد (001/0p< ).نتیجهگیری: بر اساس یافتهها، به نظر میرسد احتمالا یک اثر سینرژیستی میان سیستمهای ملانوکورتینی، کورتیکوتروپینی و هیستامینرژیک با لپتین در کنترل اخذ غذا در جوجههای گوشتی وجود دارد.
Introduction & Objective: Appetite modulation is a set of physiological mechanisms that influence the various areas of the central nervous system. Melanocortin, corticotropin, and histaminergic systems have an important role in the central control of food intake in birds. On the other hand, leptin decreases food intake in birds. Therefore, the aim of this study was to explain the synergistic effects of melanocortin, corticotropin, and histaminergic systems with leptin on food intake in neonatal broiler chickens. Materials and Methods: A total of one hundred and thirty-two neonatal chicks were randomly divided into three experimental groups. Each experiment had a control group and three treatment groups (n=11 in each group). In all experiments, 3-hour food-deprived birds received intracerebroventricular injections of either control diluent or drug solution. Then, the birds had ad libitum access to the food and fresh water, and then cumulative food intake (gr) was measured based on the percentage of the body. In the first experiment, normal saline, leptin (2.5 µg), histamine (75 nmol) and leptin plus histamine were injected. The other experiments were conducted as experiment 1, but in experiment 2, MTII (MC3/MC4 receptors agonist) (2.45 pmol) and in experiment 3, urocortin (CRF1/CRF2 receptors agonist) (0.1 µg) were injected instead of histamine, either alone or in combination with leptin. Results: The results of the present study showed that co-injection of histamine and leptin, MTII plus leptin, and urocortin plus leptin significantly reduced food intake in broiler chickens (P<0.001). Conclusion: According to the results of the present study, there is probably a synergistic effect between melanocortin, corticotropin and histaminergic systems with leptin on food intake control of neonatal broiler chicks.
1. Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol. 2011 Oct;95(2):149-62.
2. Nicholl CG, Polak JM, Bloom SR. The hormonal regulation of food intake, digestion, and absorption. Annu Rev Nutr. 1985;5:213-39.
3.Denbow DM, McCormack JF. Central versus peripheral opioid regulation of ingestive behavior in the domestic fowl. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1990;96(1):211-6.
4.McCarthy JC, Siegel PB. A review of genetic and physiological Effects of selection in meat-type poultry. Anim. Breed. 1983; 51, 87-94.
5.Denbow DM. Peripheral and central control of food intake. Poult Sci. 1989 Jul;68(7):938-47.
6.Mobarhan Fard M, Vazir B, Zendehdel M, Asghari A. Interaction of Central Glutamatergic and Histaminergic Systems on Food Intake Regulation in Layer Chickens. Arch Razi Inst. 2021 Sep 1;76(3):537-551.
7.Zendehdel M, Khodadadi M, Vosoughi A, Mokhtarpouriani K, Baghbanzadeh A. β2 adrenergic receptors and leptin interplay to decrease food intake in chicken. Br Poult Sci. 2020 Apr;61(2):156-163.
8.Ahmadi F, Zendehdel M, Babapour V, Panahi N. Evaluating the Role of Corticotropin Receptors on Feed Intake Using Melanocortin Receptor Agonists in Neonatal Broilers. Rap. 2020;11(30), 66-73.
9.Zhang R, Nakanishi T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM, Furuse M. Suppression of food intake induced by corticotropin-releasing factor family in neonatal chicks. Eur J Pharmacol. 2001 Sep 7;427(1):37-41.
10.Qi W, Ding D, Salvi RJ. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res. 2008 Feb;236(1-2):52-60.
11.Olanrewaju H, Thaxton J, Dozier W, Purswell J, Roush W, Branton S. A review of lighting programs for broiler production. International journal of poultry science. 2006;5(4), 301-8.
12.Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav. 1979 Apr;22(4):693-5.
13.Denbow DM, Meade S, Robertson A, McMurtry JP, Richards M, Ashwell C. Leptin-induced decrease in food intake in chickens. Physiol Behav. 2000 May;69(3):359-62.
14.Taouis M, Dridi S, Cassy S, Benomar Y, Raver N, Rideau N, Picard M, Williams J, Gertler A. Chicken leptin: properties and actions. Domest Anim Endocrinol. 2001 Nov;21(4):319-27.
15.Zhang F, Wang S, Signore AP, Chen J. Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke. 2007 Aug;38(8):2329-36.
16.Steppan CM, Swick AG. A role for leptin in brain development. Biochem Biophys Res Commun. 1999 Mar 24;256(3):600-2.
17.Taati M, Babapour V, Kheradmand A, Tarrahi MJ. The role of central endogenous histamine and H1, H2 and H3 receptors on food intake in broiler chickens. Iranian Journal of Veterinary Research. 2009;10(1): 54-60. doi: 10.22099/ijvr.2009.1090
18.Greenman Y, Kuperman Y, Drori Y, Asa SL, Navon I, Forkosh O, Gil S, Stern N, Chen A. Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol Endocrinol. 2013 Jul;27(7):1091-102.
19.Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014 Jan 8;220(2):T25-46.
20. Strader AD, Schiöth HB, Buntin JD. The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavior. Brain Res. 2003 Jan 17;960(1-2):112-21.
21. Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol. 1997 Nov 27;339(2-3):211-4.
22. Contarino A, Gold LH. Targeted mutations of the corticotropin-releasing factor system: effects on physiology and behavior. Neuropeptides. 2002 Apr-Jun;36(2-3):103-16.
23. Cline MA, Kuo AY, Smith ML, Nandar W, Prall BC, Siegel PB, Denbow DM. Differential feed intake responses to central corticotrophin releasing factor in lines of chickens divergently selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jan;152(1):130-4. doi: 10.1016/j.cbpa.2008.09.008.
24. Morimoto T, Yamamoto Y, Mobarakeh JI, Yanai K, Watanabe T, Watanabe T, Yamatodani A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav. 1999 Nov;67(5):679-83. doi: 10.1016/s0031-9384(99)00123-7.
25. Toftegaard CL, Knigge U, Kjaer A, Warberg J. The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul Pept. 2003 Mar 28;111(1-3):83-90. doi: 10.1016/s0167-0115(02)00260-4.
26. Morimoto T, Yamamoto Y, Yamatodani A. Brain histamine and feeding behavior. Behav Brain Res. 2001 Oct 15;124(2):145-50.
27. Yoshimatsu H, Itateyama E, Kondou S, Tajima D, Himeno K, Hidaka S, Kurokawa M, Sakata T. Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes. 1999 Dec;48(12):2286-91.
28. Randi G, Pelucchi C, Gallus S, Parpinel M, Dal Maso L, Talamini R, Augustin LS, Giacosa A, Montella M, Franceschi S, La Vecchia C. Lipid, protein and carbohydrate intake in relation to body mass index: an Italian study. Public Health Nutr. 2007 Mar;10(3):306-10. doi: 10.1017/S1368980007226084.
29. Kask A, Rägo L, Wikberg JE, Schiöth HB. Evidence for involvement of the melanocortin MC4 receptor in the effects of leptin on food intake and body weight. Eur J Pharmacol. 1998 Oct 30;360(1):15-9. doi: 10.1016/s0014-2999(98)00699-2.
30. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology. 1997 Oct;138(10):4489-92. doi: 10.1210/endo.138.10.5570.
31. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes. 1997 Dec;46(12):2119-23.
32. Huang Q, Rivest R, Richard D. Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology. 1998 Apr;139(4):1524-32.
33. Gotoh K, Fukagawa K, Fukagawa T, Noguchi H, Kakuma T, Sakata T, Yoshimatsu H. Glucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior. FASEB J. 2005 Jul;19(9):1131-3.
_||_
1. Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol. 2011 Oct;95(2):149-62.
2. Nicholl CG, Polak JM, Bloom SR. The hormonal regulation of food intake, digestion, and absorption. Annu Rev Nutr. 1985;5:213-39.
3.Denbow DM, McCormack JF. Central versus peripheral opioid regulation of ingestive behavior in the domestic fowl. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1990;96(1):211-6.
4.McCarthy JC, Siegel PB. A review of genetic and physiological Effects of selection in meat-type poultry. Anim. Breed. 1983; 51, 87-94.
5.Denbow DM. Peripheral and central control of food intake. Poult Sci. 1989 Jul;68(7):938-47.
6.Mobarhan Fard M, Vazir B, Zendehdel M, Asghari A. Interaction of Central Glutamatergic and Histaminergic Systems on Food Intake Regulation in Layer Chickens. Arch Razi Inst. 2021 Sep 1;76(3):537-551.
7.Zendehdel M, Khodadadi M, Vosoughi A, Mokhtarpouriani K, Baghbanzadeh A. β2 adrenergic receptors and leptin interplay to decrease food intake in chicken. Br Poult Sci. 2020 Apr;61(2):156-163.
8.Ahmadi F, Zendehdel M, Babapour V, Panahi N. Evaluating the Role of Corticotropin Receptors on Feed Intake Using Melanocortin Receptor Agonists in Neonatal Broilers. Rap. 2020;11(30), 66-73.
9.Zhang R, Nakanishi T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM, Furuse M. Suppression of food intake induced by corticotropin-releasing factor family in neonatal chicks. Eur J Pharmacol. 2001 Sep 7;427(1):37-41.
10.Qi W, Ding D, Salvi RJ. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res. 2008 Feb;236(1-2):52-60.
11.Olanrewaju H, Thaxton J, Dozier W, Purswell J, Roush W, Branton S. A review of lighting programs for broiler production. International journal of poultry science. 2006;5(4), 301-8.
12.Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav. 1979 Apr;22(4):693-5.
13.Denbow DM, Meade S, Robertson A, McMurtry JP, Richards M, Ashwell C. Leptin-induced decrease in food intake in chickens. Physiol Behav. 2000 May;69(3):359-62.
14.Taouis M, Dridi S, Cassy S, Benomar Y, Raver N, Rideau N, Picard M, Williams J, Gertler A. Chicken leptin: properties and actions. Domest Anim Endocrinol. 2001 Nov;21(4):319-27.
15.Zhang F, Wang S, Signore AP, Chen J. Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke. 2007 Aug;38(8):2329-36.
16.Steppan CM, Swick AG. A role for leptin in brain development. Biochem Biophys Res Commun. 1999 Mar 24;256(3):600-2.
17.Taati M, Babapour V, Kheradmand A, Tarrahi MJ. The role of central endogenous histamine and H1, H2 and H3 receptors on food intake in broiler chickens. Iranian Journal of Veterinary Research. 2009;10(1): 54-60. doi: 10.22099/ijvr.2009.1090
18.Greenman Y, Kuperman Y, Drori Y, Asa SL, Navon I, Forkosh O, Gil S, Stern N, Chen A. Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol Endocrinol. 2013 Jul;27(7):1091-102.
19.Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014 Jan 8;220(2):T25-46.
20. Strader AD, Schiöth HB, Buntin JD. The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavior. Brain Res. 2003 Jan 17;960(1-2):112-21.
21. Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol. 1997 Nov 27;339(2-3):211-4.
22. Contarino A, Gold LH. Targeted mutations of the corticotropin-releasing factor system: effects on physiology and behavior. Neuropeptides. 2002 Apr-Jun;36(2-3):103-16.
23. Cline MA, Kuo AY, Smith ML, Nandar W, Prall BC, Siegel PB, Denbow DM. Differential feed intake responses to central corticotrophin releasing factor in lines of chickens divergently selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jan;152(1):130-4. doi: 10.1016/j.cbpa.2008.09.008.
24. Morimoto T, Yamamoto Y, Mobarakeh JI, Yanai K, Watanabe T, Watanabe T, Yamatodani A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav. 1999 Nov;67(5):679-83. doi: 10.1016/s0031-9384(99)00123-7.
25. Toftegaard CL, Knigge U, Kjaer A, Warberg J. The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul Pept. 2003 Mar 28;111(1-3):83-90. doi: 10.1016/s0167-0115(02)00260-4.
26. Morimoto T, Yamamoto Y, Yamatodani A. Brain histamine and feeding behavior. Behav Brain Res. 2001 Oct 15;124(2):145-50.
27. Yoshimatsu H, Itateyama E, Kondou S, Tajima D, Himeno K, Hidaka S, Kurokawa M, Sakata T. Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes. 1999 Dec;48(12):2286-91.
28. Randi G, Pelucchi C, Gallus S, Parpinel M, Dal Maso L, Talamini R, Augustin LS, Giacosa A, Montella M, Franceschi S, La Vecchia C. Lipid, protein and carbohydrate intake in relation to body mass index: an Italian study. Public Health Nutr. 2007 Mar;10(3):306-10. doi: 10.1017/S1368980007226084.
29. Kask A, Rägo L, Wikberg JE, Schiöth HB. Evidence for involvement of the melanocortin MC4 receptor in the effects of leptin on food intake and body weight. Eur J Pharmacol. 1998 Oct 30;360(1):15-9. doi: 10.1016/s0014-2999(98)00699-2.
30. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology. 1997 Oct;138(10):4489-92. doi: 10.1210/endo.138.10.5570.
31. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes. 1997 Dec;46(12):2119-23.
32. Huang Q, Rivest R, Richard D. Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology. 1998 Apr;139(4):1524-32.
33. Gotoh K, Fukagawa K, Fukagawa T, Noguchi H, Kakuma T, Sakata T, Yoshimatsu H. Glucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior. FASEB J. 2005 Jul;19(9):1131-3.