تأثیر اسپرمیدین و سالیسیلیک اسید بر میزان پلیآمینهای داخلی، فعالیت آنزیمهای شکارکننده رادیکالهای آزاد و میزان تخریب اکسیداتیو لیپیدها در گل بریدنی رز رقم "بلکمجیک"
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیرضا نعمت اله ثانی 1 * , سیدحسین نعمتی 2 , محمود شور 3 , محمد فرجادی شکیب 4
1 - گروه علوم باغبانی، دانشکده کشاورزی، پردیس بین الملل دانشگاه فردوسی مشهد، مشهد، ایران
2 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
3 - گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
4 - گروه علوم باغبانی، دانشکده کشاورزی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
کلید واژه: پوترسین, اسپرمین, پلی فنل اکسیداز, بیومارکر تخریبی, سوپراکسیددسموتاز,
چکیده مقاله :
گل رز یکی از مهمترین گیاهان زینتی میباشد که به دلیل دارا بودن گلهای زیبا و رنگهای متنوع، امروزه دارای رتبه نخست در تولید و صادرات گلهای بریدنی است. کمیت و کیفیت در ارقام این گل به شدت تابع شرایط محیطی و تغذیهای بوده و کاربرد تنظیم کنندههای رشد قبل و پسازبرداشت یکی از روشهای متداول در افزایش کیفیت و دوام این گل میباشد. لذا در این پژوهش، گل بریدنی رز رقم"بلکمجیک" قبلازبرداشت با اسپرمیدین (0، 50، و 100 میلیگرمدرلیتر) و پسازبرداشت با سالیسیلیک اسید (0، 50، و 100 میلیگرمدرلیتر) مورد تیمار قرار داده و کیفیت پسازبرداشت آن از جنبههای بیوشیمیایی مختلف همچون میزان پلیآمینهای داخلی (اسپرمیدین، اسپرمین و پوترسین)، فعالیت آنزیمهای شکارکننده رادیکال آزاد (همچون سوپراکسیددسموتاز، کاتالاز، پلی فنل اکسیداز) و میزان تخریب اکسیداتیو لیپیدها (از طریق میزان بیومارکر تخریبی مالوندیآلدئید تولید شده) مورد بررسی قرار گرفت. نتایج نشان داد کاربرد اسپرمیدین و سالیسیلیک اسید موجب افزایش میزان پروتئینهای محلول، بهبود فعالیت آنزیمهای سوپراکسیددسموتاز، کاتالاز و پلی فنل اکسیداز در گلبرگهای گل بریدنی رز رقم"بلکمجیک" گردید. افزایش فعالیت آنزیمهای دخیل در تنش اکسیداتیو نیز موجب کاهش تخریب لیپیدها و کاهش میزان بیومارکر تخریبی مالوندیآلدئید تولید شده گردید. از سوی دیگر میزان پلیآمینهای درونی اسپرمیدین، اسپرمین و پوترسین نیز به طور معنیداری از کاربرد خارجی اسپرمیدین و سالیسیلیکاسید متأثر گردیدند.
Rose is one of the most important ornamental plants which nowadays holds the first top position in production and export of cut flowers due to its beautiful and colorful flowers. The quantity and quality of rose cultivars depend on environmental and nutrition. Pre and post-harvest application of plant growth regulators is one of the common methods for quality improvement of this flower. Therefore, in the present study, cut ‘Black Magic’ rose flowers were treated at pre harvest with spermidine (0, 50 and 100 mgl-1) and with salicylic acid (0, 50 and 100 mgl-1) during postharvest. Consequently, postharvest quality from various point of view such as internal polyamine content, activity of free radical enzymes (such as superoxide dismutase, catalase and polyphenol oxidase) and destructive lipid oxidation (malondialdehyde content) were studied. Results indicate that foliar application with spermidine and with salicylic acid increases petal soluble protein content, improves the activity of superoxide dismutase, catalase and poly phenol oxidase in the petals of cut ‘Black Magic’ rose flowers. Activity increment of enzymes that are involved in oxidative stress, decreased lipid peroxidation and consequently, they decreased malondialdehyde content as destructive biomarker. Internal polyamines such as spermine, spermidine and putrescine were also significantly affected by spermidine and salicylic acid application.
رشیدی، آ. 1387. راهنمای کامل پرورش و نگهداری گیاه رز. انتشارات رشیدی، تهران، ایران. 184 ص.
فرجادی شکیب، م، نادری، ر، ا و مشهدی اکبر بوجار، م. 1392. تأثیر محلولپاشی اسپرمیدین بر خصوصیات مورفولوژیکی، فیزیولوژیکی و بیوشیمایی سیکلامن ایرانی. مجله اکوفیزیولوژی گیاهی. جلد 5، شماره 13: 113-96.
Acquaah, G. 2004. Understanding Biotechnology: An integrated and Cyber Based Approach, Prentice Hall, NJ, USA, pp:46-62.
Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.
Alaey, M., M. Babalar, R. Naderi and M. Kafi. 2011. Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biol. Technol. 61(1): 91-94.
Anderson, N.O. 2006. Flower breeding and genetics: issues, challenges and opportunities for the 21st century. Springer Science and Business Media. Pp:12-34.
Arora, A., R.K. Sairam and G.C. Srivastava. 2002. Oxidative stress and antioxidant system in plants. Curr. Sci. 82:1227-1238.
Asada, K. 1992. Ascorbate peroxidase – a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 55:235-241.
Bowler, C., M. Van Montague and D. Inje. 1992. Superoxide dismutase and strees tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bradford, M.N. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-257.
Buchanan-Wollaston, V., S. Earl, E. Harrison, E. Mathas, S. Navabpour, T. Page and D. Pink. 2003. The molecular analysis of leaf senescence- a genomics approach. Plant Biotechnol. 1:3-22.
Callis, J. 1995. Regulation of protein degradation. Plant Cell. 7: 845–857.
Crozier, A., J. Burns, A.A. Aziz, A.J. Stewart, H.S. Rabiasz, G.I. Jenkins and M.E. Lean. 2000. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biological Res. 33(2): 79-88.
Debasis, C., J. Chatterjee and S.K. Datta. 2007. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul. 53:107-115.
Ezhilmathi, K. 2001. Physiological and biochemical studies of senescence in Gladiolus. M.Sc. Thesis. Indian Agricultural Research Institue, New Delhi, India. pp: 67-93.
Ezhilmathi, K., V.P. Singh, A. Arora and R.K. Sairam. 2007. Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regul. 51(2): 99.
Gerailoo, S., and M. Ghasemnezhad. 2011. Effect of salicylic acid on antioxidant enzyme activity and petal senescence in ‘Yellow Island’cut rose flowers. J. Fruit and Ornamental Plant Res. 19(1): 183-193.
Halim, V.A., A. Vess, D. Scheel and S. Rosahl. 2006. The role of salicylic acid and jasmonic acid in pathogen defence. Plant Biology. 8(3): 307-313.
Hatamzadeh, A., M. Hatami and M. Ghasemnezhad. 2012. Efficiency of salicylic acid delay petal senescence and extended quality of cut spikes of Gladiolus grandiflora cv wings sensation. African J. Agri. Res. 7(4): 540-545.
Hayat, Q., S. Hayat, M. Irfan and A. Ahmad. 2010. Effect of exogenous salicylic acid under changing environment: a review. Environ. Experim. Bot. 68(1): 14-25.
Horvath, E., G. Szalai and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Plant Growth Regul. 26:290-300.
Hossain, Z., A.K. Mandal, S.K. Datta and A.K. Biswas. 2006. Decline in ascorbate peroxidase activity–A prerequisite factor for tepal senescence in gladiolus. J. Plant physiol. 163(2): 186-194.
Isola, M.C. and L. Franzoni. 1989. Inhibition of net synthesis of ribonuclease by polyamines in potato tuber slices. Plant Sci. 63: 39–45.
Kar, M. and D. Mishra. 1976. Catalase, peroxidase, polyphenol oxidase activities during rice senescence. Plant Physiol. 57:315-319.
Kazemi, M., E. Hadavi and J. Hekmati. 2012. Effect of salicylic acid, Malic acid, citric acid and sucrose on antioxidant activity, membrane stability and ACC-Oxidase activity in relation to vase life of carnation cut flowers. J. Plant Sci. 7(2): 78-84.
Kazemi, M., E. Hadavi and J. Hekmati. 2011. Role of salicylic acid in decreases of membrane senescence in cut carnation flowers. American J. Plant Physiol. 6(2): 106-112.
Kumar, V. and S. Chandel. 2018. Studies on biochemical mechanism of resistance for the management of rose powdery mildew. J. Pharmacognosy Phytochem. 7(1): 1234-1241.
Lee, T.M., H.S. Lur and C. Chu. 1997. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings.: II. Modulation of free polyamine levels. Plant Sci. 126(1): 1-10.
Leverentz, M.K., C.W. Rogers, J.H. Stead, A.D.C. Usawadee, H. Silkowski, B. Thomas, H. Weichert, I. Feussner and G. Griffiths. 2002. Characterization of a novel lipoxygenase-independent senescence mechanism in Alstromeria peruviana floral tissue. Plant Physiol. 130:273-283.
Liu. J.H., K. Nada, C. Honda, H. Kitashiba, X.P. Wen, X.M. Pang and T. Moriguchi. 2006. Polyamine biosynthesis of apple callusunder salt stress: importance of arginine decarboxylase pathway in stress response. J. Exp. Bot. 57:2589-2599.
Martin-Tanguy, J. 2001. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 34:135-148.
Mayak, S., R.L. Legge and J.E. Thompson. 1983. Superoxide radical production by microsomal membranes from senescing carnation flowers: an effect on membrane fluidity. Phytochem. 22(6): 1375-1380.
Mortazavi, N., R. Naderi, A. Khalighi, M. Babalar and H. Allizadeh. 2007. The effect of cytokinin and calcium on cut flower quality in rose (Rosa hybrida L.) cv. Illona. J. Food Agri. Environ. 5(3/4): 311-317.
Nahed, G., A. Abdel Aziz, M. Mazher and M.M. Farahat. 2010. Response of vegetative growth and chemical constituents of Thuja orientalis L. plant to foliar application of different amino acids at Nubaria. J. American Sci. 6(3): 295-301.
Panavas, T., and B. Rubinstein. 1998. Oxidative events during programmed cell death of daylily (Hemerocallis hybrida) petals. Plant Sci. 133: 125–138.
Pohjanpelto, P. and E. Holtta. 1996. Phosphorylation of Okazaki-like DNA fragments in mammalian cells and role of polyamines in the processing of this DNA. EMBO J. 15: 1193-1200.
Prochazkova, D., R.K. Sairam, G.C. Srivastava and D.V. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161:765-771.
Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12.
Schoner, S. and G.H. Krause. 1990. Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta. 180:383-389.
Smart, C. 1994. Gene expression during leaf senescence. New Phytol. 126: 419-448.
Sood, S. and P.K. Nagar. 2003. The effect of polyamines on leaf senescence in two diverse rose species. Plant Growth Reg. 39:155-160.
Sood, S. and P.K. Nagar. 2008. Post-harvest alterations in polyamines and ethylene in two diverse rose species. Acta Physiol. Plant. 30:243-248.
Sood, S., D. Vyas and P.K. Nagar. 2006. Physiological and biochemical studies during flower development in two rose species. Scientia Hort. 108:390-396.
Sood, S.H. and P.K. Nagar. 2004. Changes in endogenous polyamines during flower development in two diverse species of rose. Plant Growth Regul. 44: 117-123.
Sticher, L., B. Mauch-Mani and A.J. Metraux. 1997. Systemic acquired resistance. Ann. Rev. Phytopathol. 35(1): 235-270.
Sulekha, M., Y. Satish, Y., Sunita and R.K. Nema. 2009. Antioxidants: a review. J. Chem. Pharm. Res. 1(1): 102-104.
Tassoni, A., M.V. Buuren, M. Franceschetti, S. Fornale and N Bagni. 2000. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol. Biochem. 38:383-393.
Tassoni, A., P. Accettulli and N. Bagni. 2006. Exogenous spermidine delays senescenceof Dianthus caryophyllus flowers. Plant Biosystems. 140:107-114.
Thompson, J.E, R.L. Legge and R.L. Barber. 1987. The role of free radicals in senescence and wounding. New Phytol. 105:317-334.
Walden, R., A. Cordiero and A.F. Tiburcio. 1997. Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiol. 113: 1009–1013.
Willekens, H., S. Chamnongpol, M. Davey, M. Schrauder, C. Langebartels, M. Van Montagu, D. Inze and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16: 4806–4816.
Zamani, S., M. Kazemi and M. Aran. 2011. Postharvest life of cut rose flowers as affected by salicylic acid and glutamin. World App. Sci. J. 12(9): 1621-1624.
_||_