اثر روی (Zn2+) و با و بدون نیتروپروساید سدیم Na2+(Fe(CN)5NO)2- بر رشد و برخی شاخص های فیزیولوژیکی کاج الدار (Pinus eldarica Medw)
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیطاهر آبتین 1 , جواد میرزایی 2 * , اصغر مصلح آرانی 3 , حمید رضا عظیم زاده 4
1 - دانش آموخته دانشگاه یزد
2 - مدیر گروه آموزشی علوم جنگل، دانشگاه ایلام
3 - استاد، دانشکده منابع طبیعی و کویرشناسی ، گروه محیط زیست، هیات علمی دانشگاه یزد
4 - دانشیار گروه محیطزیست، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران.
کلید واژه: کلروفیل, گیاه پالایی, کاج الدار, اختلالات رشدی, مالون دآلدئید,
چکیده مقاله :
اگرچه روی یک عنصر ضروری برای گیاهان است ولی غلظت بالای آن سمی است و منجر به اختلالات عملکردی و ساختاری میشود. بدین منظور غلظتهای متفاوت روی صفر (شاهد) ، 100، 200 و 400 میلیگرم بر لیتر و اثر تیمار همزمان روی به همراه مقدار ثابتی (750 میلیگرم) از نیتروپروساید سدیم ( (SNPدر سال 92-91 در نهالستان شهرستان یزد انجام شد. سپس برخی شاخصهای مورفولوژی و فیزیولوژیکی کاج الدار اندازه گیری و مورد بررسی قرار گرفت. نتایج نشان داد میزان تجمع فلز روی در تیمار بدون SNP در سه اندام ریشه، ساقه و برگ بهترتیب با افزایش غلظت تیمارها افزایش مییابد، بیشترین تجمع در ریشه (mg/kg 80/538) و کمترین تجمع در برگ (mg/kg 73/105) دیده شد. کلروفیل a، b، کلروفیل کل، مالون دآلدئید و پرولین تغییر معنیداری نداشت، اما میزان قندهای محلول در ریشه و برگ بهطور معنیداری افزایش یافت. در تیمار همزمان روی و SNP نیز با افزایش غلظت روی در خاک میزان آن در ریشه، ساقه و برگ بصورت معنیداری افزایش یافت و بیشترین مقدار در ریشه (mg/kg 36/662) و کمترین مقدار در برگ (mg/kg 16/46) دیده شد. بطور کلی می توان نتیجه گرفت کاج الدار به دلیل مقاومت خوب آن در غلظتml/l 400 در هر دو تیمار، بدون مشاهده هیچ گونه اثر منفی و جدی بر روی فاکتورهای مهم رشدی آن و همچنین توانایی تجمع بیشتر روی در ریشهها نسبت به بخشهای هوایی میتوان از آن به عنوان گونه تثبیت کننده برای پاکسازی خاکهای مناطق آلوده به روی استفاده کرد.
Although Zn is an essential element for plants, but it is poisonous in high concentrations and affect growth disturbance. This study was performed in 2013 to investigated the effects of different concentration (0, 100, 200 and 400 mg/L) of the Zn and also done a fixed amount (750mg) of SNP on growth and some physiological parameters in Pinus eldarica. Results showed the accumulation of Zn (without SNP) in root, stem and leaves increased when concentration of Zn in soil increased. The most were measured in root (538.80mg/kg) and lowest in leaves (105.73mg/kg). Different concentration of Zn did not significantly effect on Chlorophyll a, b, and total Chlorophyll, MDA, and proline but increased soluble sugar in root and leaves. Also, SNP increased concentration of Zn in soil significantly increased in the root, stem, leaf and root and were measured most in root (662.36 mg/kg) and lowest in leaves (46.16 mg/kg). Generally, due to good resistance in 400 ml/l concentration and also the better accumulations in roots rather than shoots in Pinus eldarica, we can use as refinement in pollutant soils.
پورخباز، ع.ر.، جوانمردی، ح. ر.، جوانمردی، س. 1390. آلودگی هوا و اثرات آن بر گیاهان. انتشارات دانشگاه بیرجند. 268 صفحه.
داوری، ع.، جوانشیر، ا.، خراسانی، ن. خ.، دانه کار، ا. 1390. بررسی تجمع فلزات سنگین در بستر، برگ و ریشه درختان حرا (Avicennia marina) در استان بوشهر. نشریه محیط زیست طبیعی. دوره 63، شماره 3، صفحه 277-267.
رئیسی، م. ع.، اسرار، ز. و پورسیدی، ش. 1388. بررسی اثر متقابل سدیم نیتروپروساید سدیم (SNP) و مس بر برخی از پارامترهای رشد و فیزیولوژی گیاه شاهی (Lepidium Sativum L.). مجله زیست شناسی گیاهی. جلد 1، شماره 2: 55-73.
مهدوی، ع. و خرمن دار، خ. 1394. ارزیابی توان نهالهای یکساله نخل زینتی در تجمع فلز آلاینده روی. مجله علوم و تکنولوژی محیط زیست. شماره 1: 165-155.
نصیبی، ف. 1390. بررسی اثر غلظتهای متفاوت نیتروپروساید سدیم (SNP) در تخفیف صدمات اکسیداتیو ناشی از تنش خشکی در گیاه گوجه فرنگی. مجله زیست شناسی گیاهی. شماره 9: 63-74.
نصیبی، ف.، منوچهری کلانتری، خ. و یعقوبی، م.م. 1390. مقایسه پیش تیمار سدیم نیترو پروساید سدیم و آرژینین و برخی پاسخهای فیزیولوژیکی گیاه گوجه فرنگی (Lycopersicum esculetum) تحت تنش کم آبی. مجله زیست شناسی ایران. جلد 6، شماره 24: 833-847.
Assareh M.A., Ghamari Zare A,(2008). " Seedling response of three Eucalyptus species to copper and zinc, toxic concentrations Caspian", J. Env. Sci, 6 (2): 97-103.
Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant soil. 39: 205-207.
Bishnoi, N.R., A. Dua, V.K. Gupta and S.K. Sawhney. 1993. Effect of chromium on seed germination, seedling growth and yield of peas. Agric. Ecosyst. Environ. 47 (1): 47-57.
Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko and A. Lux. 2007. Zinc in plants. New Phytol. 173: 677–702.
Celik A., A.A., Kartal, A., Akdogan and Y, Kaska. 2005. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. J. Environ. Inter. 31: 105-112.
Chen, H., B. Mc Carig, M. Melotto, S. Yang He and G.A. Howe. 2004. Regulation of plant arginase by wounding, Jasmonate and the phytotoxin coronatine. J. Biol. Chem. 279: 45998-46007.
Cherif, J., N. Derbel, M. Nakkach, H. Bergmann, F. Jemal and Z.B. Lakhdar. 2010. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J. Photochem. Photobiol. 101: 332–339.
Di, L., L. Ai-Hong, H. Chen, W. Jin-Hua and W. Yan-An. 2012. Response of Organic Acids to Zinc Homeostasis in Zinc-Deficient and Zinc-Toxic Apple Rootstock Roots. Pedosphere. 22(6): 803-814.
Ernst, W. 1975. Physiology of heavy metal resistance in plants. In Hutchinson, T. C., Epstein, S., Page, A. L., Van Loon, J. and Davey, T. (eds.) Proceedings of an International Conference on Heavy Metals in the Environment. Vol. 2. CEP Consultants, Toronto., Edinburgh, pp. 121–136.
Guerinot, M. L. and D. Eide. 1999. Zeroing in on zinc uptake in yeast and plants. Curr. Opin. Plant. Biol. 2: 244–249.
Hsu, Y.T. and C.H. Kao. 2004. Cd toxicity is reduced by nitric oxide in rice leaves. Plant. Growh. Regul. 42: 227-238.
Haydon, M.J. and C.S. Cobbett. 2007. Transporters of ligands for essential metal ions in plants. New Phytol. 174: 499–506.
Hissao, T. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24: 519-570.
Jones, D.L. 1998. Organic acids in the rhizospherea critical review. Plant Soil. 205: 25–44.
Kuang, Y.W., G.Y. Zhou, D.Z.Wen, J. Li and F.F. Sun. 2011. Analysis of Polycyclic Aromatic Hydrocarbons in Tree-Rings of Masson Pine (Pinus Massoniana L.) from Two Industrial Sites in the Pearl River Delta, South China. J. Environ. Monit. 13: 2630–2637.
Kochert, G. 1978. Carbohydrate determination by the phenol sulfuric acid method: 56-97. In: Outten, C.E. and T.V. O’Halloran. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 292: 2488–2492.
Leshem, Y.Y. 1996. Nitric oxide in biological systems. Plant. Growth. Regul. 18: 155-159.
Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Method Enzym. 148: 350-382.
Li, X., Y. Yang, L. Jie, H. Chen and X. Wei. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 89: 150-157.
Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London.
Mathys, W. 1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants. Physiol. Plantarum. 40: 130–136.
Mehta, S.K. and J.P. Gaur. 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol. 143: 253–259.
Mingorance, M.D., B. Valdés and S. Rossini Oliva. 2007.Strategies of Heavy Metal Uptake by Plants Growing under Industrial Emissions.Environ. Int. 33: 514–520.
Moya, J.L., R. Ros and I. Picazo. 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth. Res. 36: 75–80.
Odjegba, V.J and I.O. Fasidi. 2004. Accumulation of trace elements by Pistia stratoides: implications for phytoremediation. Ecotoxicology. 13: 637–646.
Parekh, D., R.M. Puranik and H.S. Srivastava. 1990. Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Bioch. Physio. Pflanzen. 186: 239–242.
Pessarakli, M. 1999. Handbook of Plant and Crop Stress. Second Edition. Marcel Dekker, Inc.
Reddy, A.R., K.V. Chaitanya and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202.
Ryan, C. A. and M. Walker-Simmons. 1983. Plant vacuoles. Methods Enzymol. 96: 580–589.
Serbula, M.S., S.T. Kalinovic, A.A. Ilic and V.J. Kalinovic. 2013. Assessment of Airborne Heavy Metal Pollution Using Pinus spp. and Tilia spp. Aerosol and Air Quality Research, 13: 563–573.
Shanti, S.S. and K.J. Dietz. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Experim. Bot. 57: 711-726.
Sharma, P. and R.S. Dubey. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant. Growth. Regul. 46: 209-221.
Schat, H. and R. Vooijs. 1997. Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris aco-segregation analysis. New. Phytol. 136: 489–496.
Sun, F., D. Wen, Y. Kuang, J. Li. and W. Zuo. 2010. Concentrations of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Needles of Masson Pine (Pinus massoniana L.) Growing Nearby Different Industrial Sources. J. Environ. Sci. 22: 1006–1013.
Sun, F.F., Wen, daZ. Kuang, Y.W. Li, J. and J.G. Zhang. 2009. Concentrations of Sulphur and Heavy Metals in Needles and Rooting Soils of Masson Pine (Pinus massoniana L.) Trees Growing along an Urban-Rural Gradient in Guangzhou, China. Environ. Monit. Assess. 154: 263–274.
Tripathi, B.N. and J.P. Gaur. 2004. Relationship between copper and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta. 219: 397– 404.
Van de Mortel, J.E., L.A. Villanueva, H. Schat, J. Kwekkeboom, S. Coughlan, D. Moerland, P.V.L. Van Themaat, M. Koornneef and M.G.M. Aarts. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant. Physiol. 142: 1127–1147.
Verma, S. and R.S. Dubey. 2001. Effect of Cd on soluble sugars and enzymes of their metabolism in rice. Biologia. plantarum. 44 (1): 117 – 123.
Wendehenne, D., A. Pugin, D. Klessig, and J. Durner, 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Tren. Plant Sci. 6: 77-183.
Wu, R. and A. Garg. 2003. Engineernig rice plants with trehalose producing genes improves tolerance to drought, salt and low temperature.ISB News, February.
Xu, W.H., H. Liu, Q.F. Ma and Z.T. Xiong. 2007. Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere. 17: 389–396.
_||_