استفاده از توابع پایه شعاعی با پارامتر شکلی متغیر برای حل معادلات دیفرانسیل جزیی
محورهای موضوعی : آمارحنانه نوجوان 1 , سعید عباسبندی 2 * , توفیق الهویرنلو 3
1 - گروه ریاضی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه ریاضی کاربردی، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
3 - گروه ریاضی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Local meshless method, Method of lines, Newton basis functions, Variably scaled radial kernel, Burgers’ equation,
چکیده مقاله :
در این مقاله از روشهای بدون شبکه مبتنی بر توابع پایهای نیوتن موضعی برای حل معادلات دیفرانسیل با مشتقات جزیی وابسته به زمان استفاده شده است. به منظور پایداری بیشتر از هستههای شعاعی به طور متغیر مقیاس شده برای ساخت توابع پایهای نیوتن استفاده شده است. در ادامه با در نظر گرفتن توابع پایهای معرفی شده به عنوان توابع آزمون، تابع جواب در راستای متغیر مکان با استفاده از توابع آزمون به روش هم مکانی تقریب زده میشود. سپس با استفاده از روش خطوط، به دستگاهی از معادلات با مشتقات معمولی بر حسب تابع جواب در راستای متغیر زمان دست یافتیم. روشهای معرفی شده را برای حل معادله غیرخطی برگرز به کار گرفته و با مشاهده نتایج عددی دقت و کارآیی روش مشخص خواهد شد.
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable with collocation method. Then, with aid of method of lines obtained a system of ordinary differential equations according to solution function in the event of time. Methods applied for solving the nonlinear Burgers’ equation and couple Burgers’ equation. The numerical results show that the proposed method is efficient, accurate and stable.
[1] Belytschko, T., Lu, Y.Y., Gu, L. (1994).” Element-free Galerkin methods”. Int. J. Numer. Methods Engrg. 37, 229-256.
[2] Liu, W.K., Jun, S., Zhang, Y.F. (1995). ”Reproducing kernel particle
methods”. Int. J. Numer. Methods Fluids 21, 1081-1106.
[3] Kansa, E.J. (1990).”Multiquadrics–a scattered data approximationscheme with application to computational fluid dynamics, part I”. Comput. Math Appl. 19, 127–145.
[4] Mukherjee, Y.X., Mukherjee, S. (1997). ”The boundary node method for potential problems”. Int. J. Numer. Methods Eng.40,797-815.
[5] Zhu, T., Zhang, J.D., Atluri, S.N.(1998).”A local boundary integralequation (LBIE) method in computational mechanics and a meshless discretization approach”. Comput. Mech. 21, 223-235.
[6] Sladek, J., Sladek, V., Atluri, S.N. (2000). ”Local boundary integral equation (LBIE) method for solving problem of elasticity with nonhomogeneous material properties”. Comput. Mech. 24, 456-462.
[7] Dehghan, M., Mirzaei, D. (2008). ”Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method”. Int. J. Numer. Methods Eng.76,501-520.
[8] Mohebbi, A., Dehghan, M. (2008). ” High order compact solution of the one-space-dimensional linear hyperbolic equation”. Numer Methods Partial Differential Equations 24, 1222-1235.
[9] Atluri, S.N., Shen,S.,"The Meshless Local Petrov-Galerkin Method, (MLPG)".Tech Science Press, 2002.
[10] Dehghan, M., Mirzaei, D. (2009).” Meshless Local Petrov-Galerki method (MLPG) for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity”. Appl. Numer.Math. 59, 1043-1058.
[11] Dehghan, M., Mirzaei, D. (2008). ”The meshless local Petrov Galerkin (MLPG) method for the generalized two-dimensional nonlinear Schrodinger equation”. Engineering Analysis with Boundary Elements. 32, 747-756.
[12] Mazarei M.M., A. Aminataei A. (2012). ”Numerical Solution of Poisson’s Equation Using a Combination of Logarithmic and Multiquadric Radial Basis Function Networks”. Journal of Applied Mathematics. dx.doi.org/10.1155/286391.
[13] Liu, G.R. (2003). ”Mesh Free Methods: Moving beyond the Finite Element Method”. CRC press.
[14]Nguyen, V.P., Rabczuk, T., Bordas, S.,
Duflot, M. (2008). ”Meshless methods: A review and computer implementation aspects," Math. Comput. Simul. 79, 763-813.
[15] Sarler, B. (2007). ”From global to local radial basis function collocation method for transport phenomena”. Berlin: Springer, 257-282.
[16] Yun, D.F., Hon, Y.C. (2016). ”Improved localized radial basis function collocation method for multi-dimensional convectiondominated problems”. Eng. Anal. Bound. Elem. 67, 63–80.
[17] Sarra, S. (2012). ”A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains". Appl. Math. Comp. 218, 9853–9865.
[18] Sarler, B. (2007). ”From global to local radial basis function collocation method for transport phenomena”. Berlin: Springer, 257-282.
[19] Lee, C., Liu, X., Fan, S. (2003). ”Local multiquadric approximation for solving boundary value problems”. Comput. Mech. 30, 396–409.
[20] Abbasbandy, S., Darvishi, M.T. (2005). ”A numerical solution of Burgers’ equation by time discretization of Adomian’s decomposition method”. Appl. Math. Comput. 170,95–102.
[21] Asaithambi, A. (2010).”Numerical solution of the Burgers’ equation by automatic differentiation”.Appl. Math. Comput. 216, 2700-2708.
[22] Dag, I., Irk, D., Saka, B. (2015).”A numerical solution of the Burgers’equation using cubic B- splines”. Appl. Math. Comput. 163(1),199-211.
[23] Hashemian, A. Shodja, H.M. (2008).”A meshless approach for solution of Burgers’ equation”. J. Comput. Appl. Math. 220, 226–239.
[24] Jiwari, R. (2012). ”A haar wavelet quasi linearization approach for numerical simulation of Burgers’ equation”. Comput. Phys. Commun.
183,2413-2423.
[25] Jiwari, R. (2015). ”A hybrid numerical scheme for the numerical solution of the Burgers’ equation”. Comput. Phys. Commun. 188,59-67.,
[26] Mittal, R., Jain, R. (2012). ”Numerical solutions of nonlinear burgers equation with modified cubic b-splines collocation method". Appl. Math. Comput. 218(15), 7839–7855..
[27] Xie, H., Zhou, J., Jiang, Z., Guo, X. (2016). ”Approximations for Burgers’ equations with C-N scheme and RBF collocation methods". J. Nonlinear Sci. Appl. 9, 3727–3734.
[28] Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R. (2015). ”Interpolation with variably scaled kernels”. IMA J. Numer. Anal. 35,199-219.
[29] L.T. Luh, The shape parameter in the Gaussian function, Comput. Math. Appl. 63 (2012) 687–694..
[30] Sarra, S., Sturgill, D. (2009). ”A random variable shape parameter
strategy for radial basis function approximation methods”. Eng. Anal. Bound. Elem. 33, 1239–1245
[31] Muller, S., Schaback, R. (2009). ” A Newton basis for kernel spaces”. J. Approx. Theory. 161, 645–655.
[32] Pazouki, M., Schaback, R. (2011). Bases for kernel-based spaces". J. Comput. Appl. Math. 236, 575–588
[33] Schaback, R. (2011). ”Matlab Programming for Kernel -Based methods”. Technical Report, http://num.math.unigoettingen de/schaback/research/papers/MPfKBM.pdf.
[34] Caldwell, J. Smith, P. (1982). ”Solution of Burgers’ equation with a large Reynolds number”. Appl. Math. Model. 6, 381–385
[35] Hon, Y.C., Mao, X.Z. (1998 )." An efficient numerical scheme for Burgers’ equation”. Appl.Math.Comp.95,37-50.