برآورد پارامترهای فازی از طریق شبکههای عصبی فازی با استفاده از دادههای ذوزنقهای
محورهای موضوعی : آمارراضیه نادرخانی 1 , محمد حسن بهزادی 2 , طاهره رزاق نیا 3 * , رحمان فرنوش 4
1 - گروه آمار، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشگاه آزاد اسلامی، واحد علوم وتحقیقات،گروه آمار، تهران، ایران
3 - گروه آمار، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران ، ایران
4 - دانشکده ریاضی، دانشگاه علم و صنعت ایران، تهران، ایران
کلید واژه: Nonparametric Fuzzy Regression, Trapezoidal Fuzzy Numbers, Adaptive Fuzzy Neural Inference System (ANFIS), Leans squares error,
چکیده مقاله :
رگرسیون فازی یک مدل رگرسیونی تعمیم یافته است که نشان دهنده ارتباط متغیرهای مستقل و وابسته در محیط فازی میباشد. تجزیه و تحلیل رگرسیون خطی فازی تعمیم مدلهای رگرسیونی است که با استفاده از تمامی دادهها بر اساس یک معیار خاص مناسب میباشد. در این مقاله یک سیستم استنتاج فازی عصبی تطبیقی (انفیس)برای تجزیه و تحلیل و پیش بینی یک تابع رگرسیون فازی غیر پارامتری با ورودیهای غیر فازی و خروجیهای فازی ذوزنقهای متقارن استفاده میشود. بدین منظور، یک الگوریتم جدید هیبریدی پیشنهاد میشود که در آن حداقل مربعات فازی و برنامهنویسی خطی برای بهینهسازی وزنهای ثانویه مورد استفاده قرار میگیرند. الگوریتمها به روش اعتبارسنجی چند لایه برای تأیید اعتبار مدل ها اعمال میشود. به طور دقیقتر، دقت الگوریتمها با شبیهسازی ها به طورکامل تایید میشود. در نهایت برای بررسی کارایی مدل از دو مثال شبیه سازی استفاده شده است که در آن، داده ها به صورت اعداد ذوزنقه ای تعریف شده اند و با آموزش آنها و مشخص کردن تعداد قوانین استفاده شده، پارامترهای مجهول برآورد شده اند.
Fuzzy regression is a generalized regression model that shows the relationship between independent and dependent variables in the fuzzy environment. Fuzzy linear regression analysis is the generalization of regression models that is appropriate using all data based on a specific criterion. This paper uses an adaptive neural fuzzy inference system to analyze and predict a non-parametric fuzzy regression function with non-fuzzy inputs and symmetrical trapezoidal fuzzy outputs. To this end, a new hybrid algorithm is proposed in which fuzzy minimum squares and linear programming are used to optimize secondary weights. Algorithms are applied by multi layer validation to validate models. More precisely, the accuracy of the algorithms with simulations is fully confirmed. Finally, two simulation examples were used to examine the efficiency of the model, in which the data were defined as trapezoidal numbers and by teaching them and specifying the number of rules used, the unknown parameters were estimated.
[1]. Zadeh, A.: Fuzzy sets, Inform and Control 8, 338-353 (1965).
[2]. Tanaka, H., Uejima, S., Asia, K.: Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics 12, 903-907 (1982).
[3]. Diamond, P.: Fuzzy least squares. Information Sciences 46, 141-157 (1988).
[4] C. Kao, C. L. Chyu, A fuzzy linear regression model with better explanatory power, Fuzzy Sets and Systems 126 (2002) 401-409.
[5]. H. T. Lee, S. H. Chen, Fuzzy regression model with fuzzy input and output data for manpower forecasting, Fuzzy Sets and Systems 119 (2001) 205-213.
[6]. H.T. Lee, H. Tanaka, Fuzzy approximations with non-symmetric fuzzy parameters in fuzzy regression analysis, Journal of the Operations Research Society of Japan 42 (1999) 98-112.
[7]. Hong, D.H., Lee, S., Do, H.Y.: Fuzzy linear regression analysis for fuzzy input-output data using shape-preserving operations, Fuzzy Sets and Systems 122, 513-526 (2001).
[8]. Kim, B., Bishu, R.R.: Evaluation of Fuzzy linear regression models by comparison membership function, Fuzzy Sets and Systems 100, 343-352 (1998).
[9]. Tanaka, H., Watda, J.: Possiblistic linear systems and their application to the linear regression, Fuzzy Sets and Systems 27, 275-289 (1988).
[10]. Ishibuchi, H., Tanaka, H.: Fuzzy regression analysis using neural networks. Fuzzy Sets and Systems 50, 257-265 (1992).
[11]. Ishibushi, H. Tanaka, Fuzzy neural networks with interval weights and its application to fuzzy regression analysis, Fuzzy Sets and Systems 57 (1993) 27-39.
[12]. Chang, P. T., Lee, E. S., A generalized fuzzy weighted least-squares regression, Fuzzy Sets and Systems 82(1996) 289-298.
[13]. M. S. Yang, T. S. Lin, Fuzzy least-squares linear regression analysis for fuzzy input-output data, Fuzzy Sets and Systems 126 (2002) 389-399.
[14]. M. S. Yang, H. H. Liu, Fuzzy least-squares algorithms for interactive fuzzy linear regression models, Fuzzy Sets and Systems 135 (2003) 305-316.
[15]. R. Coppi, P.D' Urso, P. Giordani, A Santoro, Least squares estimation of a linear regression model with LR fuzzy response, Computational Statistics and Data Analysis 51 (2006) 267-286.
[16] J. D. Sanchez, A. T. Gomez, Applications of fuzzy regression in actuarial analysis, Journal of Risk Insurance 70 (2003) 665- 699.
[17]. Tanaka, H., Hayashi, I., Watada, J.: Possibilistic linear regression analysis for fuzzy data. European Journal of Operational Research 40, 389-396 (1989).
[18]. Tanaka, H., Ishibushi, H.: Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters. Fuzzy Sets and Systems 41, 145-160 (1991).
[19]. Tanaka, H., Lee, H.: Interval regression analysis by quadratic programming approach. IEEE Transactions on Fuzzy Systems 6, 473-481 (1998).
[20]. Farnoosh, R., Ghasemian J., Solaymani fard, O.: A modification on ridge estimation for fuzzy nonparametric regression. Iranian Journal of Fuzzy System 9 (2), 75-88 (2012).
[21]. Hardle, W.: Applied Nonparametric Regression, Cambridge University Press, New York, (1990).
[22]. D. O. Loftsgaarden and G.P. Quesenberry, A nonparametric estimate of a multivariate density function, Annals of Mathematical Statistics 36, 1049-1051, (1965).
[23]. Danesh, Farnoosh, Razzaghnia. Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system, Neurocomputing 173, (2016)
[24]. Fausett, L.V.: Fundamentals of neural networks: architectures, algorithms, and applications. Prentice Hall; 1994.
[25]. Loftsgaarden, D.O. and Quesenberry, G.P.: A nonparametric estimate of a multivariate density function, Annals of Mathematical Statistics 36, 1049-1051(1965).
[26]. Razzaghnia, T., Danesh, S., Maleki, A.: Hybrid fuzzy regression with trapezoidal fuzzy data. Proc. SPIE 8349, 834921-1-6, (2011).
[27]. Reden, D.T., Woodal, W.H.: Properties of certain fuzzy linear regression models, Fuzzy Sets and Systems 64, 361-375(1994).
[28]. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control, IEEE Transactions on Systems, Man and Cybernetics 15, 116-132 (1985).
[29]. Ishibuchi, H., Kwon, K., Tanaka, H.: A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets and Systems 71, 277-293 (1995).
[30]. Cheng, C.-B., Lee, E. S.: Applying Fuzzy Adoptive Network to Fuzzy Regression Analysis. Computers and Mathematics with Applications 38, 123-140 (1999).
[31]. Cheng, C.-B., Lee, E.S.: Fuzzy regression with radial basis function networks. Fuzzy Sets and Systems 119, 291-301 (2001).
[32]. Kartalopous, S.: Underestanding neural networks and fuzzy logic, IEEE Press, NY. 1996.
[33]. Razzaghnia, E. Pasha, E. Khorram, A. Razzaghnia, Fuzzy linear regression analysis with trapezoidal coefficients, First Joint Congress On Fuzzy and Intelligent Systems 2007, Aug. 29-31, Mashhad, Iran.
[34]. Razzaghnia, T., Danesh, S.: Nonparametric Regression with Trapezoidal Fuzzy Data. International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), 3826 – 3831 (2015).
[35]. Razzaghnia, T., Regression parameters prediction in data set with outliers using neural network. Hacettepe Journal of Mathematics and Statistics. 48 (4), 1170 – 1184 (2019).
[36] Škrjanc. I, Antonio Iglesias. J, Sanchis. A, Leite. D, Lughofer. E, Gomide. F, Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey, Information Sciences 490,344- .369, 2019.
[37] Junhong. L, Zeng. W, Xie. J, Yin. Q, A new fuzzy regression model based on least absolute deviation, Engineering Applications of Artificial Intelligence 52, 54-64, 2016.
[38] Deng. W and Zhao., A novel collaborative optimization algorithm in solving complex optimization problems. Soft Computing 21(15), 4387-4398, 2017.
[39] Khosravia. K, Shahabib. H, A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods, Journal of Hydrology 573, 311-323, 2019.
[40] Liu.T, Zhang.W, McLean. P, Electronic Nose-Based Odor Classification using Genetic Algorithms and Fuzzy Support Vector Machines, International Journal of Fuzzy Systems 20,1309-1320, 2018.
[41]. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application, Academic Press, New York, 1980.
[42]. Wang, N., Zhang, W. X., Mei, C. L.: Fuzzy nonparametric regression based on local linear smoothing technique. Information Sciences 177, 3882-3900 (2007).