جداسازی و شناسایی جمعیتهای باکتریایی از آب و رسوب استخرهای پرورش ماهی کپور نقره ای
محورهای موضوعی : میکروب شناسی کاربردی
مهران آوخ کیسمی
1
*
,
علی محمد پور
2
,
محمد رهاننده
3
,
افشار ذوقی شلمانی
4
1 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
2 - بخش تحقیقات زیست محیطی، اداره کل محیط زیست استان گیلان، سازمان حفاظت محیط زیست کشور، رشت، ایران.
3 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
4 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
کلید واژه: کپور نقرهای, فلور باکتریایی, هیپوفیتالمیکتیس مولیتریکس, بیولوگ, میکرولوگ. ,
چکیده مقاله :
در پرورش ماهی کپور نقرهای به دلیل روش تغذیهای پوره خواری، بیماریهای عفونی ناشی از باکتریها یکی از عوامل مهم تلفات است که به دنبال تغییر کیفیت آب پرورشی ایجاد می گردد. هدف از اين مطالعه جداسازی و شناسايي فلور باکتریایی آب و رسوب استخرهای پرورش ماهی کپور نقرهای منطقه سنگر رشت بود. چهار مزرعه دارای مولدین ماهی کپور نقره ای (هیپوفیتالمیکتیس مولیتریکس) با میانگین وزن 0/99 ± 5/76 کیلوگرم بهعنوان محل های نمونه برداري در نظر گرفته شد. جهت جداسازی و شناسایی فلور باکتریایی آب و رسوب، نمونه های تهیهشده بهصورت انفرادي برای كشت ميكروبي مقدماتي و تفريقي استفاده شدند. نمونههای رشدیافته پس از كشت مجدد، خالصسازي و بر اساس جدول آزمایش های شيميايي به بررسی و مطالعه خواص آن ها اقدام و تا حد گونه شناساييگردیدند. در بررسی متغیرهای فیزیکوشیمیایی آب مزارع نمونه برداری شده و شمارش باکتریهای آب مکان های نمونهبرداری مولدین اختلاف معنی داری مشاهده نگردید. بعد از جداسازی و تعیین صفات مورفولوژیکی و بیوشیمیایی باکتریهای جداسازی شده 11 جنس از آب و رسوب استخرهای پرورش شناسایی گردید که فراوان ترین آنها جنس های باسیلوس، آئروموناس و سودوموناس بودند. بر اساس نتایج این تحقیق، اختلاف تراکم باکتری های گرم منفی و گرم مثبت جداسازی شده از نمونه ها معنیدار نبود اگرچه تعداد زیادی از باکتری های جداسازی شده در این تحقیق بیماریزا شناخته شدهاند، اما پاتوژن اولیه نبوده و در بدن آبزیان، در آب دریا، مصب ها و محیط های آب شیرین به عنوان قسمتی از میکروفلورایطبیعی محسوب می شوند. البته در شرایط بروز استرس و تحلیل سیستم ایمنی بدن آبزیان میتوانند بیماری زایی نمایند.
In silver carp farming, infectious diseases caused by bacteria are one of the important causes of mortality that occurs following changes in the quality of the culture water. The aim of this study was to isolate and identify the bacterial flora of water and sediment in silver carp farming ponds in the Sangar of Rasht. Four farms with Hypophthalmichthys molitrix broodstocks (76.5 ±0.99 kg) were considered as sampling sites. In order to isolate and identify the bacterial flora of water and sediment, the samples prepared individually were used for preliminary and differential microbial culture. The grown samples were re-cultivated, purified and their properties were identified to the species level based. No significant differences were observed in the study of the physicochemical variables of the water and the bacterial count of the sampled farms. Totally 11 genera were identified from the water and sediment of the breeding ponds, the most abundant of which were the genera Bacillus, Aeromonas and Pseudomonas. According to the results of this study, the difference in the density of gram-negative and gram-positive bacteria isolated from the samples was not significant. Although a large number of bacteria isolated in this study are known to be pathogenic, they are not primary pathogens and are considered part of the natural microflora in the body of aquatic animals, in seawater, estuaries and freshwater environments. Of course, in conditions of stress and degradation of the immune system of aquatic animals, they can become pathogenic.
1. Avakh Keysami M, Akbari Kashli A, Abdollah Pourbiriya H, Avakh Keysami M. The effectiveness of Micrococcus luteus bacteria on some blood and immune indices of juvenile common carp (Cyprinus carpio). Animal Biology, 2025; 17(4): 115-128. (in Persian).
2. Behera BK, Bera AK, Paria P, Das A, Parida PK. Identification and pathogenicity of Plesiomonas shigelloides in Silver Carp. Aquaculture. 2018; 493(1): 314-318.
3. Cecilia B, Daniela R, Mioara C. Research on bacterial disease in silver carp (Hypophthalmichthys molitrix Val.), farmed in pond. International Multidisciplinary Scientific GeoConference. 2018; 18 (6.2): 505- 515. DOI:10.5593/sgem2018/6.2/S25.067.
4. Shi F, Huang Y, Yang M, Lu Z, Li Y, Zhan F, Lin L, Qin Z. Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus). Frontiers in Immunology. 2022;13:970125.
5. Monghit-Camarin MA, Cruz-Lacierda ER, Pakingking Jr R, Cuvin-Aralar ML, Traifalgar RF, Añasco NC, Austin F, Lawrence M. Bacterial microbiota of hatchery-reared freshwater prawn Macrobrachium rosenbergii (de Man, 1879). Asian Fish. Sci. 2020;33:241-8.
6. Luo M, An R, Fu J, Wan S, Zhu W, Wang L, Dong Z. Comparative analysis of the gut microbiota in bighead carp under different culture patterns. Journal of Applied Microbiology. 2022 Feb 1;132(2):1357-69.
7. Tung Pang S, Ransangan J, Hatai K. Isolation, Identification and Preliminary Characterization of Candidate Probiotic Bacteria from the Intestine of Domesticated Goldfish (Carassius auratus). Journal of fisheries and environment. 2020; 44 (2 ): 39-52.
8. Epikmen, Erkmen T., Hamdi Avci, T. Tansel Tanrikul, S. Serap Birincioğlu, and Ahmet Aydoğan. "Pathological and microbiological investigations of naturally infected rainbow trout (Oncorhynchus mykiss) with Flavobacterium psychrophilum." (2020): 172-178.
9. Pourasadi M, Sattari M, Avakh keysami M, Zamani H. Microbial treatment of effluent from elephantfish (Huso huso) breeding tanks under the influence of different concentrations of a mixture of Bacillus, Corynebacterium, Nitrosomonas and Nitrobacter bacteria in the water circulation system. Aquatic Physiology and Biotechnology, 2025; 12(4): 39-56. (in Persian).
10. Mukherjee A, Ghosh K. Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catla catla (H amilton). Aquaculture Research. 2016;47(7):2243-55.
11. Rahman MM, Hamidah H. Water quality influence the phytoplankton and bacteria abundance: a comparison between shallow freshwater and saltwater ponds. Desalination and Water Treatment. 2020;188:436-43.
12. Ullah R, Qureshi AW, Sajid A, Khan I, Ullah A, Taj R. Percentage incidences of bacteria in Mahseer (Tor putitora), silver carp (Hypophthalmichthys molitrix) fish collected from hatcheries and local markets of District Malakand and Peshawar of Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology. 2022;84:e251747.
13. Avakh Keysami M, Akbari Kashli A, Abdollah Pourbiriya H, Avakh Keysami M. Investigation of the effect of Micrococcus luteus bacteria on growth efficiency, digestibility and bacterial load of the digestive tract of common carp (Cyprinus carpio, L). Wetland Ecobiology. 2024; 16(60): 1-14. (in Persian).
14.Kafilzadeh F, Mirzaei N, Kargar M. Isolation and identification of mercury-resistant bacteria from water and sediments of the Kur River. Journal of Microbial World. . 2008; 1(1), 43-49. (in Persian).
15. Garrity GM, Brenner DJ, Krieg NR, Staley JR, Manual BS. Systematic bacteriology. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, Bergey’s Manual Trust, Department of Microbiology and Molecular Genetics. 2005;2.
16. Topić Popović N, Kepec S, Kazazić SP, Strunjak-Perović I, Bojanić K, Čož-Rakovac R. Identification of environmental aquatic bacteria by mass spectrometry supported by biochemical differentiation. PLoS One. 2022 Jun 3;17(6):e0269423.
17. Kolb SA, O'Loughlin EJ, Gsell TC. Characterization of phthalate-degrading bacteria from Asian carp microbiomes and riverine sediments. International Biodeterioration & Biodegradation. 2019; 143: 104727.
18. Keysami M A, Mohammadpour M, Saad CR. Probiotic activity of Bacillus subtilis in juvenile fresh water prawn, Macrobrachium rosenbergii (de Man) at different methods of administration to the feed. Journal of Aquaculture International. 2012; 20: 499-511.
19. Keysami MA, Saad CR, Daud HM, Sijam K, Alimon AR. Comparison probiotic ability of three putative bacteria in juvenile Macrobrachium rosenbergii based on in vitro bacteria growth characteristics. Malaysian journal of Animal Science. 2005; 11(1): 61-71.
20. Daniel WW, Cross CL. Biostatistics: a foundation for analysis in the health sciences. John Wiley & Sons; 2018 Nov 13.
21. Li X, Zhou L, Yu Y, Ni J, Xu W, Yan Q. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development. Microbial ecology. 2017;74(1):239-49.
22. Frozza A, Fiorini A, Vendruscolo EC, Rosado FR, Konrad D, Rodrigues MC, Ballester EL. Probiotics in the rearing of freshwater prawn Macrobrachium rosenbergii (de Man, 1879) in a biofloc system. Aquaculture Research. 2021;52(9):4269-77.
23. Mohanta MK, Mallick P, Haque MF, Hasan MA, Saha AK. Isolation of probiotic bacteria from Macrobrachium rosenbergii and their antagonistic efficacy against pathogenic bacteria. Asian Journal of Fisheries and Aquatic Research. 2020;6(3):30-40.
24.Najem ES, Jalil OG. Isolation and identification of Pathogenic Bacteria from Cyprinus carpio L. by Vitek 2 System. Diyala Journal for Veterinary sciences. 2024;2(2):62-70.
25. Dutta D, Banerjee S, Mukherjee A, Ghosh K. Potential gut adherent probiotic bacteria isolated from rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): Characterisation, exo-enzyme production, pathogen inhibition, cell surface hydrophobicity, and bio-film formation. Acta Ichthyologica et Piscatoria. 2018;48:221-33.
26. Hosseinzadeh M, Tokmehchi A. Isolation and identification of enterotoxin-producing Aeromonas hydrophila from Common carp (Cyprinus carpio), Journal of Animal Environment. 2015; 7 (4): 173-178. (in Persian).
27. Razavilar V, Khani MR, Motallebi AA. Bacteriological study of cultured silver carp (Hypophthalmichthys molitrix) in Gilan province, Iran. Iranian Journal of Fisheries Sciences. 2013; 12(3): 689- 701.
28. Ziyarti M, Avakh Keysami M, Kafilzadeh F. Isolation and identification of microflora from rearing ponds and the digestive tract of western white shrimp (Litopenaeus vannamei) and their evaluation as probiotics. Journal of Microbial World. 2012; 5(3-4 (13)): 122-131. (in Persian).
29. Ruzauskas M, Armalytė J, Lastauskienė E, Šiugždinienė R, Klimienė I, Mockeliūnas R, Bartkienė E. Microbial and antimicrobial resistance profiles of microbiota in common carps (Cyprinus carpio) from aquacultured and wild fish populations. Animals. 2021;11(4):929.
30 Merrifield DL, Balcázar JL, Daniels C, Zhou Z, Carnevali O, Sun YZ, Hoseinifar SH, Ringø E. Indigenous lactic acid bacteria in fish and crustaceans. Aquaculture nutrition: gut health, probiotics and prebiotics. 2014:128-68.
31. Keysami M. A., Zoughi Shalmani A, Zahmatkesh Kumleh A, Karimi A. Isolation and identification of bacterial flora of the digestive tract of silver carp broodstock. Quarterly Journal of Animal Ecology, 2022; 14(4): 173-180. (in Persian).
32. Ghosh K, Banerjee S, Moon UM, Khan HA, Dutta D. Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus. International Journal of Aquaculture. 2017;7.
33. Talukdar S, Ringø E, Ghosh K. Extracellular tannase-producing bacteria detected in the digestive tracts of freshwater fishes (Actinopterygii: Cyprinidae and Cichlidae). Acta Ichthyologica Et Piscatoria. 2016; 46(3):201-210. DOI:10.3750/AIP2016.46.3.04.
34. Keysami MA, Zoughi Shalmani A, Zahmatkesh Kumleh A, Karimi A. Screening of bacterial flora isolated from the gastrointestinal tract of silver carp broodstocks (Hypophthalmichthys molitrix) as probiotics. Journal of Animal Environment. 2022; 14(1): 285-292. (in Persian).
35.Ghafarnejad Moghadam F, Shondi M, Haddadi A, Amozgar MA. The Effect of Altitude on the Diversity and Abundance of Bacterial Populations in Soil Samples from Qale Kazem Khan Mountain, Lake Urmia." Quarterly Journal of Microbial world. 2023; 4 (53): 271-281. https://doi.org/10.30495/jmw.2022.1966410.2033. (in Persian).
36. Punom NJ. 16S rRNA sequence based identification of pathogenic gut microbiota of Rohu, (Labeo rohita, Hamilton-Buchanan 1822) and Silver carp (Hypophthalmichthys molitrix) repository. Dhaka University Journal of Biological Sciences. 2017: 25(2):169-184. DOI:10.3329/dujbs.v25i2.46340
37. Rimoldi S, Gini E, Koch JF, Iannini F, Brambilla F, Terova G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Veterinary Research. 2020;16(1):118.
38. Pękala-Safińska A. Contemporary threats of bacterial infections in freshwater fish. Journal of veterinary research. 2018; 62(3): 261–267.
39 Banerjee G, Nandi A, Ray AK. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Archives of microbiology. 2017 ;199(1):115-24.
40. Luo C, Yi C, Ni L, Guo L. Characterization of dominant and cellulolytic bacterial communities along the gut of silver carp (Hypophthalmichthys molitrix) during cyanobacterial blooms. Chinese Journal of Oceanology and Limnology. 2017; 35: 624–633.