کاربرد کلسیم پروپیونات در تولید فیلم فعال ضدمیکروب بر پایه آگار- کربوکسی متیل سلولز
محورهای موضوعی : آلودگی میکروبی مواد غذائیفرید عمیدی فضلی 1 * , معصومه ممنون صوفیانی 2 , بهنام پوزشی میاب 3
1 - گروه علوم و صنایع غذایی دانشگاه آزاد اسلامی واحد صوفیان
2 - گروه علوم و مهندسی صنایع غذایی، واحد مرند، دانشگاه آزاد اسلامی، مرند، ایران
3 - گروه بیماری شناسی گیاهی، واحد مرند، دانشگاه آزاد اسلامی، مرند، ایران
کلید واژه: آگار, کربوکسی متیل سلولز, کلسیم پروپیونات, ضدمیکروب,
چکیده مقاله :
تولید پلیمرهای زیست تخریب پذیر در مقابل افزایش مصرف پلاستیکها و با توجه به طول عمر بالا و زیست تخریب پذیر نبودن آنها افزایش یافته است. در این پژوهش فیلمهای آگار- کربوکسی متیل سلولز حاوی گلیسرول (60-20 درصد) و نگهدارنده کلسیم پروپیونات (20-0 درصد) تهیه گردید. به منظور بررسی ویژگیهای فیلمهای تولید شده، آزمونهای ضخامت، نفوذ پذیری نسبت به بخار آب، حلاليت درآب، جذب رطوبت، زاويه تماس و رنگ سنجی انجام گرفت. همچنین خاصیت ضدباکتریایی و ضدکپکی فیلمهای تولید شده علیه سه جنس باکتریایی و دو جنس کپک انجام یافت. نتایج نشان داد ترکیبات به کار برده شده اثر معنی دار (p<0.05) بر حلالیت و نفوذپذیری فیلمها داشت. همچنین فیلمهای تولید شده دارای زاویه تماس بالا و درنتیجه خاصیت آبدوستی پایین بودند. طبق بررسی ویژگیهای رنگی مشخص شد کلسیم پروپیونات و گلیسرول اثر معنی داری بر پارامترهای رنگی L، a، b و اندیس زردی داشت. خواص ضدمیکروبی علیه باکتری کلبسیلا مشاهده شد همچنین فیلمهای تولیدی دارای خواص ضدکپکی بوده و میزان کلسیم پروپیونات به کار برده شده اثر معنی داری (p<0.05) بر کاهش کپک پنی سیلیوم دیجیتاتوم داشت. در نتیجه با به کارگیری بیوپلیمرهای مفید و ارزان قیمت و افزودن ترکیبات ضدمیکروبی نظیر کلسیم پروپیونات، علاوه بر حفاظت از محیط زیست میتوان فیلمی با ویژگیهای مناسب تولید کرد و از رشد میکروارگانیسمها جلوگیری به عمل آورد.
Production of biodegradable polymers has increased due to the increased use of fuel based plastics which are non-biodegradable. In this study, agar-carboxymethyl cellulose films containing glycerol (20-60%) and calcium propionate (0-20%) were prepared. Thickness, permeability to water vapor, water solubility, moisture absorption, contact angle, and color parameters were measured to evaluate the film properties. The antibacterial and antifungal properties of the films against the three bacterial genera and the two genera of mold were also investigated. The results showed that the applied factors had a significant effect (p <0.05) on the solubility and permeability of the films. Also produced films had high contact angle and consequently low hydrophilicity. According to the color properties, calcium propionate and glycerol had significant effects on the color parameters L, a, b and YI. Antimicrobial properties against Klebsiella bacteria were also observed and the films had antifungal properties. The amount of calcium propionate applied had a significant effect (p <0.05) on the reduction of penicillium. As a result, the use of inexpensive biopolymers and the addition of antimicrobial compounds such as calcium propionate, in addition to protecting the environment, can produce a film with appropriate properties and prevent the growth of microorganisms.
ابوالقاسمیفخری، ل. قنبرزاده، ب. دهقان نیا، ج. انتظامی، ع.1390. اثر مونت موريلونیت و نانوبلور سلولز بر خواص فیزيکی فیلمهای آمیخته كربوكسی متیل سلولوز پلی وينیل الکل، مجله علوم و تکنولوژی پلیمر24 (6): 466-455.
بارانی، م.، نجفی، م. و عطاي صالحی، ا. 1395. اثر باكتري لاكتوكوكوس لاكتيس (پاشش سطحي) وكاربرد پروپيونات كلسيم بر ماندگاري و خواص حسي نان لواش. فصلنامه علوم و صنايع غذايي، شماره 56، دوره 13، 164-155.
قنبرزاده، ب.، سینجلی، س. و قیاسی فر، ش. 1390. بررسي اثرات ضدقارچي پوشش هاي خوراكي بر پاية كربوكسي متيل سلولز حاوي سوربات پتاسيم بر گونه هاي توليد كننده آفلاتوكسين آسپرژيلوس در پسته. فصلنامه علوم و صنايع غذايي، شماره 2 (32)، دوره 8، ص 50-43.
نوشیروانی، ن.، قنبرزاده، ب. و انتظامی، ع.ا. 1390. مورفولوژي، زاویه تماس و ویژگی هاي رنگی فیلم هاي بیونانوکامپوزیت نشاسته- پلی وینیل الکل- نانوکریستال سلولز. نشریه پژوهشهاي صنایع غذایی، جلد 21 شماره 2، ص 154-141.
Anglès, M. N., and Dufresne, A. (2001). Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior. Macromolecules, 34(9), 2921-2931.
Armisen, R. (1997). Agar. In: Imeson, A.P. (eds) Thickening and Gelling Agents for Food. Springer, Boston, MA.
ASTM. (1995). Annual Book of ASTM Standards. Standard test methods for water vapor transmission of materials (Vol. Designation E 96-95). Philadelphia: American Society for Testing and Materials.
Barani M, Najafi MA, Salehi A. The effect of Lactococcus lactis PTCC 1336 (spraying) and application of calcium propionate on shelf life and organoleptic characteristics of Lavash bread. Food Science and Technology. 2015;13(56):15
Becaro AA, Puti FC, Panosso AR, Gern JC, Brandão HM, Correa DS, et al. Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food and bioprocess technology. 2016;9(4):63
Boun, H. R., and Huxsoll, C. C. (1991). Control of Minimally Processed Carrot (Daucus carota) Surface Discoloration Caused by Abrasion Peeling. Journal of Food Science, 56(2), 416–418.
Coppen J, Nambiar P. Agar and alginate production from seaweed in India: Bay of Bengal Programme; 1991.
Garrido T, Etxabide A, Guerrero P, De la Caba K. 2016. Characterization of agar/soy protein biocomposite films: effect of agar on the extruded pellets and compression moulded films. Carbohydrate polymers. ;151:40
Gennadios, A., Weller, C. L., Hanna, M. A., and Froning, G. W. (1996). Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61(3), 585–589.
Ghafoori ahangar z, Pourashouri P, ojagh sm, shabanpour b. The assessment of of bilayer agar- sodium caseinat film properties containing ZnO nanoparticles. Scientific Journal Management System. 2018;7(2):4
Heshmati A. Impact of cooking procedures on antibacterial drug residues in foods: A review. Journal of food quality and hazards control. 2015;2(2):
Hu D, Wang H, Wang L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT-Food Science and Technology. 2016;65:394
Kuwabara S, Kubo H. Water‐absorbing characteristics of acrylic acid‐grafted carboxymethyl cellulose synthesized by photografting. Journal of applied polymer science. 1996;60(11):196
Lu Z, Zhou X. The waterproofing characteristics of polymer sodium carboxymethyl-cellulose. Cement and concrete research. 2000;30(2):22
McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. 1993. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58, 899–903.
Mirshekari A, Madani B, Golding JB. 2017. Suitability of combination of calcium propionate and chitosan for preserving minimally processed banana quality. Journal of the science of food and agriculture.;97(11):3706-11.
Mohajer, S., Rezaei, M., & Hosseini, S. F. 2017. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate Polymers, 157, 784–793.
Myers, D. 1999. Surfaces, Interfaces, and Colloids. New York, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/0471234990
Nazmi N, Isa M, Sarbon N. Preparation and characterization of chicken skin gelatin/cmc composite film as compared to bovine gelatin film. Food bioscience. 2017;19:14
Ojagh S, Adeli A, Abdollahi M, Kazemi M, Habibi M. Effect of ZnO nanoparticles on the physico-mechanical properties of agar/kappa carrageenan bilayer film. Innovative Food Technologies. 2017;5(1):1
Orsuwan, A., Shankar, S., Wang, L.-F., Sothornvit, R., & Rhim, J.-W. 2016. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476–485.
Oun AA, Rhim J-W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers. 2015;127:1
Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C. Efficient Pb (II) removal using sodium alginate–carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate polymers. 2016;137:4
Rhim, J. W., Wang, L. F., & Hong, S. I. 2013. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327–335.
Rodríguez MC, Matulewicz MC, Noseda M, Ducatti D, Leonardi PI. Agar from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonic coast of Argentina–Content, structure and physical properties. Bioresource technology. 2009;100(3):143
Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., and Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60(2), 235–244.
Silva, M.A., Andréa Cristiane Krause Bierhalz, Theo Guenter Kieckbusch. 2009. Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77, 736–742.
Sukhtezari S, Almasi H, Pirsa S, Zandi M, Pirouzifard M. Investigation of the physical and antioxidant properties of bacterial cellulose active film containing Scrophularia striata extract. Journal of Food Research. 2017;27(2):5
Tabari M. Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods. 2017;6(6):
Tong, Q., Xiao, Q., & Lim, L.-T. 2008. Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International, 41(10), 1007–1014.
Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. 2011. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 6.