On $m^{th}$-autocommutator subgroup of finite abelian groups
Subject Areas : History and biographyA. Gholamian 1 , M. M. Nasrabadi 2
1 - Department of Mathematics, Birjand Education, Birjand, Iran
|
Farhangian University, Shahid Bahonar Campus, Birjand, Iran
2 - Department of Mathematics, University of Birjand, Birjand, Iran
Keywords: Automorphism, Lower autocentral series, Finite Abelian group,
Abstract :
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of$G$. For any naturalnumber $m$, the $m^{th}$-autocommutator subgroup of $G$ is definedas: $$K_{m} (G)=\langle[g,\alpha_{1},\ldots,\alpha_{m}] |g\in G,\alpha_{1},ldots,\alpha_{m}\in Aut(G)\rangle.$$In this paper, we obtain the $m^{th}$-autocommutator subgroup ofall finite abelian groups.
[1] C. Chi, M. Chi, and G. Silberberg, Abelian groups as autocommutator groups. Arch. Math. (Basel). 90 (6) (2008), 490-492.
[2] P, Hall, Some sufficient conditions for a group to be nilpotent. Illinois J. Math. 2 (1958), 787-801.
[3] P. Hegarty, The absolute centre of a group. J. Algebra 169 (3) (1994), 929-935.
[4] C. Hillar and D. Rhea, Automorphisms of finite abelian groups. Amer. Math. Monthly. 114 (10) (2007), 917-922 .
[5] M. R. R. Moghaddam, F. Parvaneh and M. Naghshineh, The lower autocentral series of abelian groups. Bull. Korean Math. Soc. 48 (1) (2011), 79-83.
[6] M. M. Nasrabadi and A. Gholamian, On A-nilpotent abelian groups. Proc. Indian Acad. Sci. (Math. Sci.) 124 (4) (2014), 517-525.
[7] M. M. Nasrabadi and A. Gholamian, On finite A-perfect abelian groups. Int. J. Group Theory. 1 (3) (2012), 11-14.
[8] J. J. Rotman, An Introduction to the Theory of Groups. 4th ed, Springer-Verlag, 1995.