Chemical modification of maleic anhydride polymers with carbazole
Subject Areas : Journal of the Iranian Chemical ResearchMohammad Hossein Nasirtabrizi 1 * , Zeinab Mohammadpoor Ziaei 2 , Aiyoub Parchehbaf Jadid 3
1 - Department of Applied chemistry,Ardabil Branch, Islamic Azad University, Ardabil, Iran
2 - Department of Applied chemistry,Ardabil Branch, Islamic Azad University, Ardabil, Iran
3 - Department of Applied chemistry,Ardabil Branch, Islamic Azad University, Ardabil, Iran
Keywords: Carbazole, Chemical modification, Maleic anhydride, Dynamic mechanical thermal analysis, Glass transition temperature,
Abstract :
Maleic anhydride (MAN) copolymers with methyl methacrylate(MMA), ethyl methacrylate(EMA), methyl acrylate(MA), ethyl acrylate (EA) and buthyl acrylate (BA) ( in a 1:1 mole ratio) were synthesized by free radical polymerizations method under vacuum -azobis(isobutironitrile)(AIBN) as an initiator of reaction at 701C. The copolymer compositions were determined using related 1H NMR spectra technique and the polydispersity indices of the copolymers determined using gel permeation chromatography (GPC) method. Then Carbazole (Cz) groups were attached to the obtained copolymers by ring opening reaction between carbazole and anhydride groups of MAN units to give the copolymers ICz-VCz in high yields. The anhydride group possesses a higher reactivity with the carbazole group. The ring opening reaction between the anhydride group and the carbazole is simple and fast. All the prepared polymers, were characterized by FT-IR and ¹H NMR, spectroscopic techniques. The glass transition temperature (Tg) of all copolymers was determined by dynamic mechanical thermal analysis (DMTA). All the polymers containing carbazole groups presented a high glass transition temperature in comparison to unmodified copolymers (I-V). It was found that these polymers with carbazole moieties have high thermal stability and the presence of bulky carbazole groups in polymer side chains leads to an increase in the rigidity of polymers.
[1] G.C. Chitanu, I. Popescu, A. Carpov, Revue Roumained Chimie 51 (2006) 923-929.
[2] R. Nieuwhof, A. Marcelis, E. Sudholter, Macromolecules 32 (1999) 1398-1406.
[3] S. Hou, L. Kuo, Polymer 42 (2001) 2387-2394.
[4] L.P. Zhu, Z. Yi, F. Liu, X.Z. Wei, B.K. Zhu, Y.Y. Xu, Eur. Polym. J. 44 (2008) 1907-1914.
[5] A. Al-Sabagh, M.R. Noor, E.L. Din, R.E. Morsi, M.Z. Elsabee, J. Petroleum Sci. Engineering 62 (2009) 139-146.
[6] M. Bruch, D. Mader, F. Bauers, T. Loontjens, R. Mulhaupt, J. Polym Sci: Part A: Polym. Chem. 38 (2000) 1222-1231.
[7] A. Kowalewska, W.A. Stanczyk, S. Boileau, L. Leytel, J.D. Smith, Polymer 40 (1999) 813-818.
[8] K. Safa, H. Eram, M.H. Nasirtabrizi, Iran Polym J. 15 (2006) 249-257.
[9] Y.H. Kim, S.K. Kwon, S.K. Choi, Macromolecules 30 (1997) 6677-6679.
[10] K.D. Safa, M.H. Nasirtabrizi, Eur. Polym. J. 41 (2005) 2310-2319.
[11] X.F. Niu, Y.L. Wang, Y.F. Luo, J. Pan, J.F. Shang, L.X. Guo, Chin. Chem. Letters. 16 (2005) 1035-1038.
[12] S.W. Kuo, H.C. Kao, F.C. Chang, Polymer 44 (2003) 6873-6882.
[13] M. Babazadeh, Polymer Degradation Stability 91 (2006) 3245-3251.
[14] I.A. Danish, K.J.R. Prasad, Acta Pharm. 54 (2004) 133-142.
[15] D.J. Liaw, C.C. Hung, P.L. Wu, Polymer. 42 (2001) 9371-9377.
[16] D.J. Liaw, C.H. Tsai, Polymer. 41 (2000) 2773-2780.
[17] G.S. Liou, H.W. Chen, H.J. Yen, J. Polym. Sci, Part A: Polym. Chem. 44 (2006) 4108-4121.
[18] W. Zhang, Y. Yuefang, Z. Nianchen, Z. Cheng, J. Zhu, C. Xia, X. Zhu, Eur. Polym. J. 44 (2008) 3300-3305.
[19] S. Dincer, V. Koseli, H. Kesim, Z. Rzeav, E. Piskin, Eur. Polym. J. 38 (2002) 2143-2152.
[20] H. Kesim, Z. Rzeav, S. Pincer, E. Piskin, Polymer. 44 (2003) 2897-2909.