سینتیک کاهش رطوبت خرمالو در طی فرآیند خشک کردن ترکیبی هوای داغ- مادون قرمز
محورهای موضوعی : میکروبیولوژی مواد غذاییفخرالدین صالحی 1 * , مهدی کاشانی نژاد 2 , پونه سیاه منصوری 3 , الناز مرادی 4
1 - استادیار گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
2 - استاد دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - دانشجوی کارشناسی دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 - دانشجوی کارشناسی دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: خرمالو, سینتیک, ضریب نفوذ, مدل لگاریتمی,
چکیده مقاله :
مقدمه: بررسی سینتیک انتقال جرم و ضرایب نفوذ رطوبت می تواند یک ابزار سودمند برای کنترل شرایط فرآیند خشک کردن و افزایش کیفیت محصول باشد. مواد و روش ها: در این پژوهش مدل سازی سینتیک خشک شدن خرمالو در یک خشک کن ترکیبی هوای داغ- مادون قرمز بررسی شد. وات بر زمان و 375 و 250 ،150 درجه سانتیگراد و توان لامپ پرتودهی در سه سطح 75 و 65 ،55 تأثیر دمای هوای داغ در سه سطح آهنگ خشک شدن و ضریب نفوذ رطوبت در طی فرآیند خشک شدن خرمالو بررسی شد. یافته ها: افزایش دمای خشک درصدی در زمان خشک36 درجه سانتیگراد باعث کاهش 75 به 55 کن از کردن شد. با افزایش توان لامپ مادون درصد کاهش یافت. اثر توان حرارتی مادون 68/4 وات زمان خشک شدن خرمالو 375 به 150 قرمز از قرمز و دمای هوای داغ بر تغییرات ضریب نفوذ مؤثر خرمالو نشان داد که با افزایش توان منبع حرارتی مادونقرمز مقدار ضریب نفوذ مؤثر افزایش مییابد. ضریب نفوذ مترمربع بر ثانیه بود. 1/3×10-8 تا 1/8×10-9 مؤثر رطوبت خرمالو بین نتیجه گیری: نتایج نشان داد تأثیر دمای هوای داغ و توان لامپ پرتودهی بر فرآیند خشک شدن خرمالو معنی دار هست. در مدل سازی فرآیند خشک کردن خرمالو مدل لگاریتمی همخوانی بهتری با نتایج آزمایشگاهی در مقایسه با سایر مدل ها داشت
Introduction: Investigation of the mass transfer kinetics and moisture diffusivity coefficients can be useful tools for optimal control of the drying process condition and increasing the product quality. Materials and Methods: In this study, kinetic modeling of persimmon drying in a combined hot air- infrared dryer was investigated. The effect of hot air temperature at three levels of 55, 65 and 75 °C and radiation lamp power at three levels of 150, 250 and 375 W on time and drying rate, and moisture diffusion coefficients during drying process of persimmon were evaluated. Results: By increasing the temperature of drying from 55 to 75 °C, 36 % of the drying time was reduced and by increasing the power of infrared lamp from 150 to 375 W the time of drying of persimmon was reduced by 68.4%. The effect of infrared heat power and hot air temperature on effective diffusivity coefficient of persimmon was investigated and the results showed that the effective diffusivity coefficient was increased by increasing the heat source power. Effective diffusivity coefficient of persimmon moisture was between 1.8×10-9 to 1.3×10-8 m2/s. Conclusion: The results indicated that the effect of hot air temperature and radiation lamp power on the drying process of persimmon is significant. In modeling of persimmon drying process, the logarithmic model is a better match with the experimental results as compared to the other models.
پهلوانزاده، ح.، حدیدی، س. و قاسمی، م. (1393). ادغام خشککن جابجایی و تشعشعی جهت کاهش زمان خشک شدن. مجله علوم غذایی و تغذیه، سال دهم، شماره 3، 50-39 .
حسینی قابوس، س. ح.، سیدین اردبیلی، س. م.، کاشانی نژاد، م.، اسدی، غ.، و اعلمی. م. (1394). سینتیک انتقال جرم خشککردن ترکیبی مادونقرمز- هوای داغ کدوحلوایی. مجله علوم غذایی و تغذیه، دوره 13، 16-5.
صالحی، ف.، کاشانی نژاد، م. و اسدی امیرآبادی، ع. ر. (1394). بررسی سینتیک انتقال جرم در طی خشککردن ترکیبی هوای داغ- مادونقرمز برشهای بادمجان. مجله علوم و فناوریهای نوین غذایی، سال دوم، شماره 7، 62-55.
Abbasi, S., Minaei, S. & Khoshtaghaza. M. H. (2014). Investigation of kinetics and energy consumption thin layer drying of corn. Journal of Agricultural Machinery. 4(1), 98-107.
Afzal M. T., Abe, T. & Hilida, Y. (1999). Energy and quality Aspect during Combined FIR Convection Drying of Barely. Journal of Food Engineering, 42, 177-188.
Dostie, M., Seguin, J. N., Maure, D., Ton-That, Q. A. & Chatingy, R. (1989). Preliminary measurement on the drying of thick porous materials by combinations of intermittent infrared and continuous convection heating. In Drying’89, Eds. S.A. Mujumdar and M.A. Roques. New York: Hemisphere Press.
Doymaz, I. (2007). Air drying characteristics of tomatoes. Journal of Food Engineering, 78, 1291-1297.
Doymaz, I. & Pala, M. (2003). The thin-layer drying characteristics of corn. Journal of Food Engineering, 60, 125-130.
FAO. (2013). Statistical Database. Available: http://www.fao.org/.
Gazor, H. R. & Minaee, S. (2008). Influence of temperature and air velocity on canola drying kinetic. 5th National conference on agricultural machinery engineering and mechanization. Mshhad, Iran.
Gorjian, S. (2009). Modelling of thin layer drying kinetics of barberry fruit. Faculty of Agriculture. Tarbiat Modares University, Tehran, Iran.
Hazbavi, E. & Minaei, S. (2010). Making and investigation quality properties of dried persimmon slice. Journal of Food Science Technology, 7(4): 65-72.
Hebbar, H. U., Vishwanathan, K. H. & Ramesh. M. N. (2004). Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65, 557–563.
Itoo, S. (1980). Persimmon. In: Nagy, S. and P. E. Shaw (Eds.), Tropical and Subtropical Fruits. PP: 442. AVI Pub. Co Westport, CT.
Jun, S., Krishnamurthy, K., Irudayaraj, J. & Demirci, A. (2011). Fundamentals and theory of infrared radiation. In, Pan, Z. Atungulu, G. G. (Eds.). Infrared heating for food and agricultural processing. New York. CRC press.
Li, H. & Morey, R. V. (1984). Thin-layer drying of yellow dent corn. Transactions of the American Society of Agricultural Engineers, 27, 581-585.
Madanloo, S. (1987). Persimmon growing in Iran. Mazandaran seed and plant center publication, Iran. (In Farsi).
Miller, E. P. & Crocker, T. E. (1994). Oriental persimmons in Florida. SP 101 Institute of Food and Agricultural Sciences, University of Florida, 1-16.
Motevali, A., Minaei, S., Khoshtaghaza, M. H. & Amirnejat, H. (2011). Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy, 36(11), 6433-6441.
Mujumdar, A. S. (2000). Drying technology in agriculture and food sciences. Science publisher, Inc. Enfield (NH), USA.
Nimmol,C. & Devahastin, S. (2011). Vacuum infrared drying. In, Pan, Z. Atungulu, G. G. (Eds.), Infrared heating for food and agricultural processing. New York. CRC press.
Omid, M., Yadollahinia, A. R. & Rafiee, S. (2010). Development of a kinetic model for thin layer drying of Paddy, Fajr variety. Biosystem Engineering of Iran, 41, 153-160. (In Farsi).
Ratti, C. & Mujumdar, A. S. (1995). Infrared drying. in, mujumdar, A. S. (Ed.), handbook of industrial drying, Vol. 1, Marcel Dekker Inc., New York., pp. 567–588.
Safiyari, H., Zomorodian, A., Rahmanian, H. & Salmanizade, F. (2013). Trend of Changes in Physical Properties of Persimmon Fruit in Ambient Condition Storage, Iranian Food Science and Technology Research Journal, 8(4), 417-426.
Salehi, F., Abbasi Shahkoh, Z. & Godarzi, M. (2014). Apricot Osmotic Drying Modeling Using Genetic Algorithm - Artificial Neural Network. Journal of Innovative Food Science Technology.
Sharma, G. P., Verma, R. C. & Pathare, P. B. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71, 282–286.
Singh. P., Heldman. D. R. 1993. Introduction to Food Engineering. Second edition. Academic press, Inc. San Diego, CA.
Strumillo, C. & Kudra, T. (1987). Drying, Principles, Applications and Design. Gordon and Breach Science Publisher, USA.
Wong, J. Y. (2001). Theory of Ground vehicles.(3rd ed). John Wiley and Sons, Inc. www.FAOSTAT.org
Yaghobi, M., Tavakolipour, H., Elhami Rad, A. H., Ziyaolhagh, H. R., Mokhtarian, M., Askari, B. & Armin, M. (2012). Investigation of moisture loss kinetic and mathematical modeling of potato using regression analysis. Innovation In Food Science And Technology, 4 (2), 79-84.
Zbicinski, I., Jakobsen, A. & Driscoll, J. L. (1992). Application of infra-red radiation for drying of particulate material. Drying, 92, 704-711.