بررسی ارزش تغذیه ای برشهای سیب زمینی و پیاز سرخ شده در روغنهای کنجد، کانولا و روغن مخصوص سرخ کردن
محورهای موضوعی : میکروبیولوژی مواد غذایینسیم نیک زاد 1 , مهرداد قوامی 2 * , مهدی سیدین اردبیلی 3 , بهروز اکبری آدرگانی 4 , رضا عزیزی نژاد 5
1 - دانشجوی دکترای گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران
5 - استادیار گروه بیوتکنولوژی و بهنژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اسید چرب, پایداری اکسیداتیو, روغن کانولا, روغن کنجد, روغن مخصوص سرخ کردنی, رنسیمت, سرخ کردن عمیق,
چکیده مقاله :
مقدمه: چربی ها و روغن های خوراکی نقش حسی و عملکردی مهمی در محصولات غذایی ایفا می کنند. این ترکیبات باعث آزاد شدن عوامل ایجادکننده طعم شده که با سایر اجزا واکنش داده و باعث بهبود خصوصیات بافتی و احساس دهانی در غذاهای سرخ شده می شوند. در طول سرخ کردن غذا، روغن داغ به داخل آن نفوذ می کند، جایگزین بخشی از آب آن می شود و ماده غذایی را به طور قابل توجهی لذیذ کرده باعث ترد شدن و خوشمزه شدن ماده غذایی می شود. در این تحقیق، اثر فرایند سرخ کردن عمیق در روغن های کنجد، کانولا و روغن مخصوص سرخ کردن (فاقد آنتی اکسیدان) بر روی میزان ترکیبات فنولیک کل، پایداری اکسیداتیو و ترکیب اسیدهای چرب در برش های سرخ شده پیاز و سیب زمینی مورد بررسی و ارزیابی قرار گرفت.مواد و روش ها: برش های سیب زمینی و پیاز به ترتیب به مدت 8 دقیقه و 4 دقیقه در روغن کنجد، روغن کانولا و روغن سرخ کردنی سرخ شد. سرخ کردن عمیق در سه مرحله جداگانه (نمونه های برش جدید اما در یک روغن ثابت) صورت گرفت که بین هر مرحله فاصله زمانی سه ساعت وجود داشت. روغن برش های سیب زمینی و پیاز سرخ شده با اندازه گیری فاکتورهای پلی فنل کل (برپایه روش فولین سیوکالتو)، ترکیب اسیدهای چرب (توسط دستگاه گاز کروماتوگرافی) و پایداری اکسیداتیو (براساس روش رنسیمت) ارزیابی شدند.یافته ها: در فرآیند سرخ کردن اسیدچرب ترانس الائیدیک در روغن کانولا، 53/1 14/1 درصد به ترتیب در دفعه اول و سوم سرخ کردن ایجاد شد اما اختلاف معناداری بین مرحله اول و مرحله سوم مشاهده نشد. بدلیل اکسیداسیون اسید لینولئیک در تمام نمونه های سرخ شده پیاز و سیب زمینی مقدار اسید لینولئیک کاهش و میزان اسید پالمیتیک افزایش یافته است. بیشترین مقدار پلی فنل به ترتیب در برش های سیب زمینی سرخ شده در روغن کنجد، روغن کانولا و در نهایت در روغن مخصوص سرخ کردنی مشاهده شد. میزان پلی فنل در نمونه های سرخ شده نسبت به حالت قبل از سرخ کردن تفاوت معناداری را نشان داده است (05/0 >P). در آزمون رنسیمت، بیشترین مقاومت به اکسیداسیون در برش های سیب زمینی سرخ شده با روغن کنجد و بعد از آن در روغن مخصوص سرخ کردنی و در نهایت در روغن کانولا مشاهده شد. همچنین در برش های پیاز سرخ شده در روغن کنجد روند مشابهی مشاهده شده است.نتیجه گیری: روغن کنجد بدلیل ساختار ترکیب اسیدهای چرب و محتوای آنتی اکسیدانی در مقایسه با روغن کانولا و روغن مخصوص سرخ کردنی واسطه مناسبی در سرخ کردن عمیق می باشد.
Introduction: Fats and oils play important sensory and functional roles in food products. They are responsible for enhancing and releasing flavor components that react with other components to enhance the texture and mouthfeel of fried foods. Fat is a natural factor in making the food delicious. When frying food, hot oil penetrates into it, replaces its water content and makes it significantly more pleasant. This absorbed fat makes the crust crispy and affects the taste. In this study, the effect of deep frying process in sesame, canola and frying oils on nutrients and bioactive compounds of onions and potatoes and evaluation of their antioxidant activity were investigated.Materials and Methods: Slices of potato and onion were fried in sesame oil, canola and special frying oils for 8 minutes and 4 minutes, respectively. Deep frying was carried out in three separate steps (for new samples but in that oils) with an interval of three hours between each step. Slices of fried potatoes and onions were evaluated by measuring total polyphenol factors, fatty acid composition and antioxidant activity.Results: During frying, elaidic acid is produced in canola oil (1.14-1.53% in the first and third stages of frying, respectively), but no significant difference was observed between the first stage and the third one. Due to the oxidation of linoleic acid in all fried onion and potato samples the content of linoleic acid decreased palmitic acid content was increased. The height amount of total poly phenols in fried potato slices were found in potatoes fried in sesame oil followed by potatoes fried in canola and finally in frying oils. The same observations were made for onion slices fried.The amount of polyphenols in fried samples showed a significant difference as compared to pre-frying (P <0.05). The highest oxidation resistance as indicated by Rancimat test was observed in potato slices fried with sesame oil, followed by special frying and finally canola oils. The same observation was made for onion slices.Conclusion: It might be concluded that sesame oil probably due to its fatty acid composition and oxidational contents might be regarded as a better media for deep frying applications as completion to canola and frying oils.
AOAC. (1995). In: Cunniff, P. (Ed.), Official Methods of Analysis of AOAC. International, 16th ed. AOAC International, USA.
Ames, B. N., Shigenaga, M. & Hagen, T. M. (1993). Oxidants, antioxidants and the degenerative diseases of aging. Proceedings of the Academy of Sciences of the United States of America, 90, 7915 – 7922.
Anon, (2009), Oilseeds, Measuring the amount of oil. National Standard of Iran, No. 7593. [In Persian].
Anon, (2015). Vegetable and animal oils and fats - gas chromatography of fatty acid methyl esters - Part 2: Preparation of fatty acid methyl esters, No. 13126-2 and 13126-4. [In Persian].
Anon, (2016). Animal and vegetable fats and oils- determination of oxidative stability accelerated oxidation test method. INSO 3734.2nd. Revision. 2017. Modification of ISO 6886:2016. [In Persian].
Bakhtiary, D., Asadollahi, S. & Yasini Ardakani, S. A. (2014). Sensory qualities of sesame oil, palm Olein and the blend of them during frying of potato chips. International Juornal of Farming and Allied Sciences, 3-7, 786-790.
Beig Mohammadi, Z., Maghsoudlou, Y., Safafar, H. & Sadeghi Mahoonak, R. (2012). Physicochemical properties and stanility of oil extracted from three canola cultivars grown in golestan province of Iran. Journal of Agricultural Science and Technology, 14, 577-586.
Bellail, A., Shaltout, O. E., Youssef, M., Gamal, E. & Ahmed, M. A. (2010). Effect of Home-Cooking Methods on Phenolic Composition and Antioxidant Activity of Sweetpotato (Ipomoea batatas (L.) Lam.) Cultivars Grown in Egypt. Food and Nutrition Sciences, 3, 490-499.
Borchani, C., Besbes, S., Blecker, Ch., & Attia, H. (2010). Chemical Characteristics and Oxidative Stability of Sesame Seed, Sesame Paste, and Olive Oils. Journal of Agricultural Science and Technology, 12, 585-596.
Borjian Borojeni, M., Goli, S. A. H. & Gharachorloo, M. (2016). Effect of Roasted Sesame Oil on Qualitative Properties of Frying Oil during Deep-Fat Frying. Journal of Agricultural Science and Technology, 18, 1531-1542.
Chowdhury, R., Steur, M., Partel, P.S. & Franco, O. M. (2016). Handbook of lipids in Human Function. Elsevier, London.
Fang Deng, G., Lin, X., Rong Xu, X., Li Gao, L., Feng xie, J. & Bin Li, H. (2013). Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, 5, 260 – 266.
Fillion, L. & Henry, C. J. K. (1998). Nutrient losses and gains during frying: A review. International Journal of Food Sciences and Nutrition, 49, 157–168. doi:10.3109/ 09637489809089395
Gharby, S., Harhar, H., Bouzoubaa, Z., Asdadi, A., El Yadini, A. & Charrouf, Z. (2017). Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. Journal of the Saudi Society of Agricultural Science, 16 (2), 105-111.
Gertz, C. (2000). Chemical and physical parameters as quality indicators of used frying fats. European Journal of Lipid Science and Technology, 102, 566-572.
Houhoula, D. P. & Oreopoulou, V. (2004). Predictive study for the extent of deterioration of potato chips during storage. Journal of Food Engineering, 65, 427–432
Karaman, S., Tutem, E., Bas-Kan, K. S. & Apak, R. (2010). comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chemistry, 120, 1201-1209.
Khattab, R., Rempel, C., Suh, M. & Thiyam, U. (2012). Quality of Canola Oil Obtained by Conventional and Supercritical Fluid Extraction. American Journal of Analytical Chemistry, 966-976.
Lemos, A., Aliyu, M. & Hungerford, G. (2015). Influence of cooking on the levels of bioactive compounds in purple majesty potato observed via chemical and spectroscopic means. Food Chemistry, (173), 462-467.
Ma, J., Zhang, H., Tsuchiya, T., Akiyama, Y. & Chen, J. (2013). Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil. Food Science and Technology International, 21 (3), 163-174.
Mallikarjunan, P., Chinnan, M. S., Balasubra-Maniam, V. M. & Phillips, R. D. (1997). Edible coatings for deep-fat frying of starchy products. LWT-Food Science and Technology, 30(7), 709–714. doi:10.1006/fstl.1997.0263.
Mirrezaie Roodaki, M. S., Sahari, M. A., Ghiassi Tarzi, B., Barzegar, M. & Gharachorloo, M. (2016). Effect of refining and thermal processes on olive oil properties. Journal of Agricultural Science and Technology, 18, 629-641.
Pedreschi, F., Cocio, C., Moyano, P., & Troncoso, E. (2008). Oil distribution in potato slices during frying. Journal of Food Engineering, 87, 200–212.
Ramírez, A., Pilar, J., Sánchez, S., Castañeda-Saucedo, C., Ma Claudia, V. & Herminia, L. (2015). Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chemistry, 188, 430–438.
Saghaei, S. & Piraki Vanak, Z. (2020). The effect of deep frying process on the composition of fatty acids and sterols in grape seed oil. Journal of Food Science and Nutrition, 17 (1), 49-62 [In Persian].
Serjouie, A., Tan, C. P.., Mirhosseini, H., Che, M. & Yaakob, B. (2010). Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. International Food Research Journal, 17, 295-302.
Soriguer, F., Rojo-Martínez, G., Dobarganes, M. C., Almeida, J. M. G., Esteva, I., Beltrán, M. & González-Romero, S. (2003). Hypertension is related to the degradation of dietary frying oils. The American Journal of Clinical Nutrition, 78(6), 1092-1097.
Tsuzuki, W., Matsuoka, A. & Ushida, K. (2010) Formation of trans fatty acids in edible oils during the frying and heating process. Food Chemistry, 123, 976-982.
Varela, G. (1988). Current fact about the frying of foods. In G. Vesrala, A.E. Bender, & I.D. Morton (Eds.), Frying of food, principle, changes, New Approaches (pp. 9–25). Chichester, U.K: Ellis Horwood Ltd.
Warner, K. (2004). Chemical and physical reactions in oil during frying. Frying technology and practice. AOCS, Champaign, 16-28.
_||_AOAC. (1995). In: Cunniff, P. (Ed.), Official Methods of Analysis of AOAC. International, 16th ed. AOAC International, USA.
Ames, B. N., Shigenaga, M. & Hagen, T. M. (1993). Oxidants, antioxidants and the degenerative diseases of aging. Proceedings of the Academy of Sciences of the United States of America, 90, 7915 – 7922.
Anon, (2009), Oilseeds, Measuring the amount of oil. National Standard of Iran, No. 7593. [In Persian].
Anon, (2015). Vegetable and animal oils and fats - gas chromatography of fatty acid methyl esters - Part 2: Preparation of fatty acid methyl esters, No. 13126-2 and 13126-4. [In Persian].
Anon, (2016). Animal and vegetable fats and oils- determination of oxidative stability accelerated oxidation test method. INSO 3734.2nd. Revision. 2017. Modification of ISO 6886:2016. [In Persian].
Bakhtiary, D., Asadollahi, S. & Yasini Ardakani, S. A. (2014). Sensory qualities of sesame oil, palm Olein and the blend of them during frying of potato chips. International Juornal of Farming and Allied Sciences, 3-7, 786-790.
Beig Mohammadi, Z., Maghsoudlou, Y., Safafar, H. & Sadeghi Mahoonak, R. (2012). Physicochemical properties and stanility of oil extracted from three canola cultivars grown in golestan province of Iran. Journal of Agricultural Science and Technology, 14, 577-586.
Bellail, A., Shaltout, O. E., Youssef, M., Gamal, E. & Ahmed, M. A. (2010). Effect of Home-Cooking Methods on Phenolic Composition and Antioxidant Activity of Sweetpotato (Ipomoea batatas (L.) Lam.) Cultivars Grown in Egypt. Food and Nutrition Sciences, 3, 490-499.
Borchani, C., Besbes, S., Blecker, Ch., & Attia, H. (2010). Chemical Characteristics and Oxidative Stability of Sesame Seed, Sesame Paste, and Olive Oils. Journal of Agricultural Science and Technology, 12, 585-596.
Borjian Borojeni, M., Goli, S. A. H. & Gharachorloo, M. (2016). Effect of Roasted Sesame Oil on Qualitative Properties of Frying Oil during Deep-Fat Frying. Journal of Agricultural Science and Technology, 18, 1531-1542.
Chowdhury, R., Steur, M., Partel, P.S. & Franco, O. M. (2016). Handbook of lipids in Human Function. Elsevier, London.
Fang Deng, G., Lin, X., Rong Xu, X., Li Gao, L., Feng xie, J. & Bin Li, H. (2013). Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, 5, 260 – 266.
Fillion, L. & Henry, C. J. K. (1998). Nutrient losses and gains during frying: A review. International Journal of Food Sciences and Nutrition, 49, 157–168. doi:10.3109/ 09637489809089395
Gharby, S., Harhar, H., Bouzoubaa, Z., Asdadi, A., El Yadini, A. & Charrouf, Z. (2017). Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. Journal of the Saudi Society of Agricultural Science, 16 (2), 105-111.
Gertz, C. (2000). Chemical and physical parameters as quality indicators of used frying fats. European Journal of Lipid Science and Technology, 102, 566-572.
Houhoula, D. P. & Oreopoulou, V. (2004). Predictive study for the extent of deterioration of potato chips during storage. Journal of Food Engineering, 65, 427–432
Karaman, S., Tutem, E., Bas-Kan, K. S. & Apak, R. (2010). comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chemistry, 120, 1201-1209.
Khattab, R., Rempel, C., Suh, M. & Thiyam, U. (2012). Quality of Canola Oil Obtained by Conventional and Supercritical Fluid Extraction. American Journal of Analytical Chemistry, 966-976.
Lemos, A., Aliyu, M. & Hungerford, G. (2015). Influence of cooking on the levels of bioactive compounds in purple majesty potato observed via chemical and spectroscopic means. Food Chemistry, (173), 462-467.
Ma, J., Zhang, H., Tsuchiya, T., Akiyama, Y. & Chen, J. (2013). Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil. Food Science and Technology International, 21 (3), 163-174.
Mallikarjunan, P., Chinnan, M. S., Balasubra-Maniam, V. M. & Phillips, R. D. (1997). Edible coatings for deep-fat frying of starchy products. LWT-Food Science and Technology, 30(7), 709–714. doi:10.1006/fstl.1997.0263.
Mirrezaie Roodaki, M. S., Sahari, M. A., Ghiassi Tarzi, B., Barzegar, M. & Gharachorloo, M. (2016). Effect of refining and thermal processes on olive oil properties. Journal of Agricultural Science and Technology, 18, 629-641.
Pedreschi, F., Cocio, C., Moyano, P., & Troncoso, E. (2008). Oil distribution in potato slices during frying. Journal of Food Engineering, 87, 200–212.
Ramírez, A., Pilar, J., Sánchez, S., Castañeda-Saucedo, C., Ma Claudia, V. & Herminia, L. (2015). Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chemistry, 188, 430–438.
Saghaei, S. & Piraki Vanak, Z. (2020). The effect of deep frying process on the composition of fatty acids and sterols in grape seed oil. Journal of Food Science and Nutrition, 17 (1), 49-62 [In Persian].
Serjouie, A., Tan, C. P.., Mirhosseini, H., Che, M. & Yaakob, B. (2010). Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. International Food Research Journal, 17, 295-302.
Soriguer, F., Rojo-Martínez, G., Dobarganes, M. C., Almeida, J. M. G., Esteva, I., Beltrán, M. & González-Romero, S. (2003). Hypertension is related to the degradation of dietary frying oils. The American Journal of Clinical Nutrition, 78(6), 1092-1097.
Tsuzuki, W., Matsuoka, A. & Ushida, K. (2010) Formation of trans fatty acids in edible oils during the frying and heating process. Food Chemistry, 123, 976-982.
Varela, G. (1988). Current fact about the frying of foods. In G. Vesrala, A.E. Bender, & I.D. Morton (Eds.), Frying of food, principle, changes, New Approaches (pp. 9–25). Chichester, U.K: Ellis Horwood Ltd.
Warner, K. (2004). Chemical and physical reactions in oil during frying. Frying technology and practice. AOCS, Champaign, 16-28.