تأثیر متغیرهای فرمولاسیون و شرایط فرایند اکستروژن بر خصوصیات عملکردی و تغذیهای سبوس گندم
محورهای موضوعی : میکروبیولوژی مواد غذاییالناز میلانی 1 , غلامعلی گلی موحد 2 * , مرتضی جعفری 3 *
1 - استادیار گروه پژوهشی فرآوری غذایی پژوهشکده علوم و فناوری مواد غذایی، جهاد دانشگاهی خراسان رضوی، مشهد، ایران
2 - مربی گروه پژوهشی فرآوری غذایی پژوهشکده علوم و فناوری مواد غذایی، جهاد دانشگاهی خراسان رضوی، مشهد، ایران
3 - دانشجوی دکتری گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، مشهد، ایران
کلید واژه: اسید فیتیک, اکستروژن, اندیس جذب آب, سبوس گندم, فیبر محلول,
چکیده مقاله :
مقدمه: سبوس گندم بهعنوان منبع غنی از فیبر رژیمی، پروتئین (6/14 درصد)، مواد معدنی (7 درصد)، اسید چرب غیراشباع (اسید اولئیک، لینولئیک و لینولنیک) (17 درصد) و انواع ویتامینها شناخته میشود اما سبوس گندم دارای ویژگیهای حسی نامطلوب نظیر طعم تلخ یا احساس دهانی شنی است. از طرف دیگر، غلظت برخی مواد نامطلوب سبوس گندم نظیر اسید فیتیک بالا میباشد. هدف از این پژوهش، بررسی تأثیر رطوبت خوراک ورودی و شرایط اکستروژن شامل دما و سرعت مارپیچ اکسترودر بر ویژگیهای عملکردی، شیمیایی و تغذیهای سبوس گندم می باشد. مواد و روشها: بهمنظور اصلاح خصوصیات تغذیهای و تکنولوژیکی سبوس گندم، تأثیر رطوبت خوراک ورودی به اکسترودر (18، 21 و 25 درصد) و شرایط اکستروژن شامل دما (°C 120، 160 و 200) و دور مارپیچ (rpm170، 235 و 300) بر خصوصیات عملکردی (اندیس جذب آب، اندیس جذب حلالیت در آب و اندیس جذب روغن)، شیمیایی (فیبر محلول و نامحلول) و تغذیهای (اسید فیتیک) سبوس گندم فراوریشده مورد ارزیابی قرار گرفت. یافتهها: نتایج حاکی از آن بود بیشترین مقدار شاخص جذب آب و همچنین کمترین مقدار شاخص حلالیت در آب در رطوبت خوراک ورودی 25 درصد ، دمای°C 120 و دور مارپیچ rpm 170 به دست آمد. همچنین بیشترین مقدار شاخص حلالیت در آب و شاخص جذب روغن در رطوبت خوراک ورودی 18 درصد ، دمای°C 200 و دور مارپیچ rpm 300 مشاهده شد. بیشترین میزان کاهش اسید فیتیک در رطوبت خوراک ورودی 21درصد، دمای °C120 و دور مارپیچ 300 دور بر دقیقه مشاهده شد (mg/100g 09/3). نتیجهگیری: بررسیها نشان داد فرایند اکستروژن سبب کاهش فیبر نامحلول به میزان 6 درصد و افزایش فیبر محلول به میزان 55 درصد می گردد.
Introduction: Wheat bran is a concentrated source of diatery fibre, protein, minerals, unsaturated fatty acids and vitamins. Existence of some technological and nutritional difficulties containing high amount of phytic acid and unappropriate sensory characteristics has coused limitation of its application in food formulation. In this study the effect of formulation and extrusion conditions containing feed moisture content, tempreture and screw speed were evaluated on chemical, functional and nutitional properties of texturized wheat bran. Materials and Methods: In order to improve the nutriotional and technological properties of wheat bran, the effects of different concentration of feed moisture content (18, 21 and 25%), tempreture (120, 160 and 200°C) and screw speed (170, 235 and 300 rpm) were examined on functional charactristics (water adsorbtion index; WAI, soluability index; SI and oil adsorbtion index; OAI, soluble and insoluble fiber), and the nutritional values (phytic acid) of processed wheat bran. Results: Based on results the maximum and minimum level of WAI and SI were obtained at 25% moisture content, 120°C and 170 rpm. However the maximum level of SI and OAI were demonstrated at 18% moisture content, 200°C and 300 rpm. The least Phytic acid content (3.09 mg/100g) was shown in 21% moisture content, 120°C and 300 rpm. Extrusion process had significant effect on enhancement of soluble fiber fraction (55%) and decreased the insoluble fiber (6%). Conclusion: The results indicated that, optimized condition of processing method could enhance the quality of processed wheat bran.
AACC. (2000). Approved methods of the American Association of Cereal Chemists, methods 44-15A (moisture), 08-01(ash), 30-10(fat), 76-12(starch), 46-08 (protein).
Anton, A. A., Fulcher, R. G. & Arntfield, S. D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113(4), 989-996.
Asp, N. G. (1986). Effects of extrusion cooking on the nutritional value of foods. In C Mercier, C Cantarelli (eds), Pasta and extruded cooked foods. London: Elsevier, 9–13.
Bjorck, I., Nyman, M. & Asp, N. G. (1984). Extrusion cooking and dietary fiber: effects on¨ dietary fiber content and on degradation in the rat intestinal tract. Cereal Chemistry, 61, 174–179.
Camire, M. E., Camire, A. & Krumhar, K. (1990). Chemical and nutritional changes in foods during extrusion. Critical Review of Food Science and Nutrition, 29, 35–57.
Coda, R., Rizzello, G., Curiel, J. A., Poutanen, K. & Katina K. (2014). Effect of bioprocessing and particle size on the nutritional properties of wheat bran fractions. Innovative Food Science, 25, 19–27.
Delgado-Licon, E., Ayala, A. L. M., Rocha-Guzman, N. E., Gallegos-Infante, J. A., Atienzo-Lazos, M., Drzewiecki, J., Martínez-Sánchez, C. E. & Gorinstein, S. (2009). Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. International Journal of Food Sciences and Nutrition, 60(6), 522-532.
Drago, S. R., Velasco-González, O. H., Torres, R. L., González, R. J. & Valencia, M. E. (2007). Effect of the extrusion on functional properties and mineral dialyzability from Phaseolus vulgaris bean flour. Plant Foods for Human Nutrition, 62(2), 43-48.
Dust, J. M., Gajda, A. M., Flickinger, E. A., Burkhalter, T. M., Merchen, N. R. & Fahey, G. C. (2004). Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients. J. Agric. Food Chemistry, 52(10), 2989-2996.
El-Hady, E. A. & Habiba, R. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Science and Technology, 36(3), 285-293.
ElMaki, H. B., AbdelRahaman, S. M., Idris, W. H., Hassan, A. B., Babiker, E. E. & El Tinay, A. H. (2007). Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) cultivars: Influence of soaking and/or cooking. Food Chemistry, 100(1), 362-368.
Garcı́a-Estepa, R. M., Guerra-Hernández, E. & Garcı́a-Villanova, B. (1999). Phytic acid content in milled cereal products and breads. Food Research International, 32(3), 217-221.
Gómez, M., Jiménez, S., Ruiz, E. & Oliete, B. (2011). Effect of extruded wheat bran on dough rheology and bread quality. LWT-Food Science and Technology, 44(10), 2231-2237.
Gualberto, D., Bergman, C., Kazemzadeh, M. & Weber, C. (1997). Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans. Plant Foods for Human Nutrition, 51(3), 187-198.
Hagenimana, A., Ding, X. & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43(1), 38-46.
Jones, W. (1992) Extrusion Specialist, Wenger Co., pers. Comm.
Karami, M. & Safiyari, M. (2018). Comparison of Phytic Acid, Sensory Properties and Microscopic Microstructure of Industrial Breads in Kermanshah. Iranian Journal of Food Science and Technology, 14 (72), 121-132.
Kaur, S., Sharma, S., Singh, B. & Dar, B. N. (2013). Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. Journal of Food Science and Technology, 52(3), 1670-1676.
Lai, C. S., Hoseney, R. C. & Davis, A. B. (1989). Effects of wheat bran in bread making. Cereal Chemistry, 66, 217-219.
Lawton, J.W., Davis, A. B. & Behnke, K.C. (1985). High-temperature, short-time extrusion of wheat gluten and a bran-like fraction. Cereal Chemistry, 62, 267-271.
Lazou, A. & Krokida, M. (2011). Thermal characterisation of corn–lentil extruded snacks. Food Chemistry, 127(4), 1625-1633.
Lazou, A. & Krokida, M. (2010). Functional properties of corn and corn–lentil extrudates. Food Research International, 43(2), 609-616.
Nugent, A. P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30(1), 27-54.
Persson, H., Turk, M., Nyman, M. & Sandberg, A.S. (1998). Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexakisphosphate. Journal of Agricultural and Food Chemistry, 46, 3194-3200.
Prosky, L., Asp, N. G., Furda, I., Devries, J. W., Shweizer, T. F. & Harland, B. F. (1985). Determination of total dietary fiber in foods and food products: collaborative study. Journal - Association of Official Analytical Chemists, 68, 677–679.
Ralet, M. C., Thibault, J. F. & Della Valle, G. (1990). Influence of extrusion-cooking on the physico-chemical properties of wheat bran. Journal of Cereal Science, 11(3), 249-259.
Rashid, S., Rakha, A., Anjum, F. M., Ahmed, W. & Sohail, M. (2015). Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. International journal of food Science & Technology, 50(7), 1533-1537.
Sandberg, A.VS., Andersson, H., Kivistö, B. & Sandström, B. (1986). Extrusion cooking of a high-fibre cereal product. British Journal of Nutrition, 55(02), 245-254.
Schlemmer, U., Wenche Frlich, W., Prieto, R. M. & Grases, F. (2009). Phytate in foods and significance for humans. Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53, 330-375.
Sharma, H., Chauhan, G. & Agrawal, K. (2004). Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. International Journal of Food Properties, 7(3), 603-614.
Sobota, A., Sykut-Domanska, E. & Rzedzicki, Z. (2010). Effect of extrusion-cooking process on the chemical composition of corn-wheat extrudates, with particular emphasis on dietary fiber fractions. Pol. Journal of Food Nutrition Science, 60(3), 251-259.
Theander, O. & Westerlund, E. (1984). Chemical modification of starch by heat treatment and further reactions of the products formed. In P Zeuthen, JC Cheftel, C Eriksson, M Jul, H Leniger, P Linko, G Varela, G Vos (eds), thermal processing and quality of foods. New York: Elsevier, 202–207.
Wang, J. & Rosell, C. M. (2002). Effect of the addition of different fibers on wheat dough performance and bread quality, Food Chemistry, 79, 221-226.
Wang, W. M., Klopfenstein, C. F. & Ponte Jr, J. G. (1993). Baking Quality of the Wheat Bran. Cereal Chemistry, 70(6), 707-711.
Wu, P., Tian, J. C., Walker, C. E. & Wang, F. C. (2009). Determination of phytic acid in cereals-a brief review. International Journal of Food Science and Technology, 44, 1671-76.
_||_AACC. (2000). Approved methods of the American Association of Cereal Chemists, methods 44-15A (moisture), 08-01(ash), 30-10(fat), 76-12(starch), 46-08 (protein).
Anton, A. A., Fulcher, R. G. & Arntfield, S. D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113(4), 989-996.
Asp, N. G. (1986). Effects of extrusion cooking on the nutritional value of foods. In C Mercier, C Cantarelli (eds), Pasta and extruded cooked foods. London: Elsevier, 9–13.
Bjorck, I., Nyman, M. & Asp, N. G. (1984). Extrusion cooking and dietary fiber: effects on¨ dietary fiber content and on degradation in the rat intestinal tract. Cereal Chemistry, 61, 174–179.
Camire, M. E., Camire, A. & Krumhar, K. (1990). Chemical and nutritional changes in foods during extrusion. Critical Review of Food Science and Nutrition, 29, 35–57.
Coda, R., Rizzello, G., Curiel, J. A., Poutanen, K. & Katina K. (2014). Effect of bioprocessing and particle size on the nutritional properties of wheat bran fractions. Innovative Food Science, 25, 19–27.
Delgado-Licon, E., Ayala, A. L. M., Rocha-Guzman, N. E., Gallegos-Infante, J. A., Atienzo-Lazos, M., Drzewiecki, J., Martínez-Sánchez, C. E. & Gorinstein, S. (2009). Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. International Journal of Food Sciences and Nutrition, 60(6), 522-532.
Drago, S. R., Velasco-González, O. H., Torres, R. L., González, R. J. & Valencia, M. E. (2007). Effect of the extrusion on functional properties and mineral dialyzability from Phaseolus vulgaris bean flour. Plant Foods for Human Nutrition, 62(2), 43-48.
Dust, J. M., Gajda, A. M., Flickinger, E. A., Burkhalter, T. M., Merchen, N. R. & Fahey, G. C. (2004). Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients. J. Agric. Food Chemistry, 52(10), 2989-2996.
El-Hady, E. A. & Habiba, R. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Science and Technology, 36(3), 285-293.
ElMaki, H. B., AbdelRahaman, S. M., Idris, W. H., Hassan, A. B., Babiker, E. E. & El Tinay, A. H. (2007). Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) cultivars: Influence of soaking and/or cooking. Food Chemistry, 100(1), 362-368.
Garcı́a-Estepa, R. M., Guerra-Hernández, E. & Garcı́a-Villanova, B. (1999). Phytic acid content in milled cereal products and breads. Food Research International, 32(3), 217-221.
Gómez, M., Jiménez, S., Ruiz, E. & Oliete, B. (2011). Effect of extruded wheat bran on dough rheology and bread quality. LWT-Food Science and Technology, 44(10), 2231-2237.
Gualberto, D., Bergman, C., Kazemzadeh, M. & Weber, C. (1997). Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans. Plant Foods for Human Nutrition, 51(3), 187-198.
Hagenimana, A., Ding, X. & Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43(1), 38-46.
Jones, W. (1992) Extrusion Specialist, Wenger Co., pers. Comm.
Karami, M. & Safiyari, M. (2018). Comparison of Phytic Acid, Sensory Properties and Microscopic Microstructure of Industrial Breads in Kermanshah. Iranian Journal of Food Science and Technology, 14 (72), 121-132.
Kaur, S., Sharma, S., Singh, B. & Dar, B. N. (2013). Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. Journal of Food Science and Technology, 52(3), 1670-1676.
Lai, C. S., Hoseney, R. C. & Davis, A. B. (1989). Effects of wheat bran in bread making. Cereal Chemistry, 66, 217-219.
Lawton, J.W., Davis, A. B. & Behnke, K.C. (1985). High-temperature, short-time extrusion of wheat gluten and a bran-like fraction. Cereal Chemistry, 62, 267-271.
Lazou, A. & Krokida, M. (2011). Thermal characterisation of corn–lentil extruded snacks. Food Chemistry, 127(4), 1625-1633.
Lazou, A. & Krokida, M. (2010). Functional properties of corn and corn–lentil extrudates. Food Research International, 43(2), 609-616.
Nugent, A. P. (2005). Health properties of resistant starch. Nutrition Bulletin, 30(1), 27-54.
Persson, H., Turk, M., Nyman, M. & Sandberg, A.S. (1998). Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexakisphosphate. Journal of Agricultural and Food Chemistry, 46, 3194-3200.
Prosky, L., Asp, N. G., Furda, I., Devries, J. W., Shweizer, T. F. & Harland, B. F. (1985). Determination of total dietary fiber in foods and food products: collaborative study. Journal - Association of Official Analytical Chemists, 68, 677–679.
Ralet, M. C., Thibault, J. F. & Della Valle, G. (1990). Influence of extrusion-cooking on the physico-chemical properties of wheat bran. Journal of Cereal Science, 11(3), 249-259.
Rashid, S., Rakha, A., Anjum, F. M., Ahmed, W. & Sohail, M. (2015). Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. International journal of food Science & Technology, 50(7), 1533-1537.
Sandberg, A.VS., Andersson, H., Kivistö, B. & Sandström, B. (1986). Extrusion cooking of a high-fibre cereal product. British Journal of Nutrition, 55(02), 245-254.
Schlemmer, U., Wenche Frlich, W., Prieto, R. M. & Grases, F. (2009). Phytate in foods and significance for humans. Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53, 330-375.
Sharma, H., Chauhan, G. & Agrawal, K. (2004). Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. International Journal of Food Properties, 7(3), 603-614.
Sobota, A., Sykut-Domanska, E. & Rzedzicki, Z. (2010). Effect of extrusion-cooking process on the chemical composition of corn-wheat extrudates, with particular emphasis on dietary fiber fractions. Pol. Journal of Food Nutrition Science, 60(3), 251-259.
Theander, O. & Westerlund, E. (1984). Chemical modification of starch by heat treatment and further reactions of the products formed. In P Zeuthen, JC Cheftel, C Eriksson, M Jul, H Leniger, P Linko, G Varela, G Vos (eds), thermal processing and quality of foods. New York: Elsevier, 202–207.
Wang, J. & Rosell, C. M. (2002). Effect of the addition of different fibers on wheat dough performance and bread quality, Food Chemistry, 79, 221-226.
Wang, W. M., Klopfenstein, C. F. & Ponte Jr, J. G. (1993). Baking Quality of the Wheat Bran. Cereal Chemistry, 70(6), 707-711.
Wu, P., Tian, J. C., Walker, C. E. & Wang, F. C. (2009). Determination of phytic acid in cereals-a brief review. International Journal of Food Science and Technology, 44, 1671-76.