بررسی اثر نیکل و آهن بر اسیدیته خاک و برخی از پارامترهای رشد گیاه مرتعی Stipa capensis (مطالعه موردی: منطقه نفت خیز گچساران)
محورهای موضوعی : مدیریت محیط زیستکامبیز حسین پور 1 * , حمید سودائیزاده 2 , مهدیه تجملیان 3
1 - کارشناس ارشد آلودگیهای محیط زیست، دانشگاه آزاد اسلامی میبد، بزد، ایران.
2 - استادیار دانشکده منابع طبیعی و کویرشناسی دانشگاه یزد، یزد، ایران.
3 - دکترای بیابانزدایی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران.
کلید واژه: گیاهپالایی, Stipa capensis, فلزات سنگین, پارامترهای رشد, گچساران,
چکیده مقاله :
چکیده زمینه و هدف: انتخاب گونه های مقاوم وبومی که قابلیت تطابق با شرایط محیطی در محل آلوده را دارند، یک عامل کلیدی در موفقیت زیست پالایی گیاهی است. هدف از این تحقیق بررسی اثر غلظت های مختلف نیکل و آهن بر درصد سبز شدن و ارتفاع گیاه مرتعی Stipa capensis در شرایط کنترل شده آزمایشگاهی می باشد. روش بررسی: جهت اجرای تحقیق از آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار استفاده شد. فاکتورهای مورد بررسی شامل نوع ماده آلاینده با دو سطح (آهن و نیکل) و غلظت ماده آلاینده با 4 سطح (ppm 0، 100، 150 و 200) بود. یافتهها: نتایج نشان داد که اثر مقادیر مختلف آهن و نیکل بر درصد سبز شدن و ارتفاع گیاه در سطح یک درصد (01/0p<) معنی دار بوده است. به طوری که با افزایش غلظت عنصر از درصد سبزشدنو ارتفاع گیاه کاسته شد. همچنین اثر نوع عنصر بر درصد جوانه زنی در سطح یک درصد و بر ارتفاع گیاه در سطح پنج درصد (05/0p<) معنی دار بود. درصد سبز شدن بذور (25/51%) و ارتفاع بوته (35/11سانتی متر) در گلدان های حاوی عنصر آهن به طور معنی داری بیش تر از حالتی بود که عنصر نیکل به خاک اضافه شده بود. اثر متقابل نوع عنصر و مقدار عنصر اضافه شده نیز تنها بر درصد سبز شدن بذردر سطح پنج درصد معنی دار بود. به طوری که بیش ترین درصد سبز شدن بذر مربوط به شاهد و کم ترین میزان (10 %) مربوط به عنصر نیکل با مقدار ppm 200 بود. بحث و نتیجهگیری: به طور کلی نتایج این تحقیق بیانگر اثر منفی عناصر نیکل و آهن بر درصد سبز شدن بذر و ارتفاع گیاه Stipa capensisبود. با این حال سبز شدن گیاه در بالاترین غلظت عناصر، بیانگر تحمل نسبی این گونه گیاهی به مواد آلاینده مورد بررسی در این مطالعه بود.
Background and Objective: Selection of resistant species with an ability to make adaptation with the local contaminated site is a key factor in the success of phytoremediation. The aim of this study was to evaluate the effect of different concentrations of Fe, Ni on seed emergence and plant height of Stipacapensis under laboratory conditions. Method: A factorial experiment based on completely randomized design with three replications was used. Pollutant substances (iron and nickel) and pollutant concentrations (0, 100, 150, 200ppm) were considered as the first and second factors, respectively. Findings: The results showed that the effect of different amounts of iron and nickel on seed emergence and plant height of Stipacapensis was significant (p <0.01). Germination and growth inhibition of test plant increased with increasing the concentration of elements. Also the effects of element type on seed germination percentage and plant height were significant at 1 and 5% levels, respectively. The highest germination percentage (51.25%) and hight (11.35 cm) was related to iron. The interaction of element type and element concentration had a significant effect (p <0.05) only on seed germination percentage. Maximum and minimum germination percentages were obtained at control and 200 ppm of Ni, respectively. Conclusion: Overall results indicate the negative effects of Fe, Ni on seed germination as well as plant height of Stipacapensis.However, germination of Stipacapensis at the highest concentration of elements, indicate the relatively tolerance of this species to soil contamination elements in this study.
1- Yalcin, M. G., Battaloglu, R., Ilhan, S., 2007. Heavy metal sources in Sultan Marsh and its neighborhood, Kayseri, Turkey. Environ Geol, Vol. 53, PP. 399-415.
2- Terry, N., Banuelos G., 2000. Phytoremediation of Contaminated Soil and Water. Lewis Pub., Boca Raton.
3- Raskin, I., Kumar, P.B.N.A., Dushenkov, Salt, V. D.E., 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol.Vol. 5, PP. 285–290.
4- Grath, S.P., C.M.D. Sidoli, A.J.M. Baker and Reeves, R.D., 1993. The potential for the use of metalaccumulating plants for the in situ decontamination of metal-polluted soils. PP. 673–677. In: H.J.P. Eijsackers and T. Hamers (Eds.), Integrated Soil and Sediment Research: A Basis for Proper Protection. Kluwer Academic Pub., Dordrecht, the Netherlands.
5- Chaney, R.L., M. Malik, Y.M. Lim, S.L. Brown, E.P. Brewer, J.S. Angle, Baker, A.J.M, 1997. Phytoremediation of soil metals. Curr. Opinion Biotechnol. Vol. 8, pp. 279-284.
6- هزارخانی، اردشیر و سودابه هزارخوانی، «بررسی اثر نیکل بر پارامترهای رشد و میزان کلروفیل در دو نوع کلزا (Brassica napus L.)» مجله علوم و تکنولوژی محیط زیست، بهار 1385 ، دوره 8، شماره 1 (مسلسل 28)، صفحات 26 تا 33.
7- خطیب، میترا، محمدحسن، راشدمحصل، گنجعلی، علی، و لاهوتی، مهرداد، «تأثیر غلظتهای مختلف نیکل بر خصوصیات مورفوفیزیولوژیکی گیاه جعفری (Petroselinum crispum)»، مجله پژوهشهای زراعی ایران، 1387، جلد 6، شماره 2، صفحات 295 تا 302.
8- دریابیگی زند، علی، نبی بید هندی، غلامرضا، مهردادی، ناصر و روانبخش، شیردم ، «توانایی گونههای گیاهی مختلف در حذف ترکیبات نفتی از خاک و تأثیر آلودگی نفتی بر رشد این گونههای گیاهی». علوم و تکنولوژی محیط زیست. 1389، جلد 12 ، شماره 4، صفحات 41 تا 57.
9- Anvari, M., Mehdikhani, H., Shahriari, A.R., Nouri, G.H., 2009. Effect of salinity stress on 7 species of range plants in germination stage. Iranian journal of Range and Desert Reseach, Vol, 16(2).
10-Thomas, G. W., 1996. Soil pH and acidity. P. 475-490. In D. L. Sparks et al. (ed.) Methods of soil analysis. Part 3. NO. 5., SSSA and SAS, Madison, WI.
11-Palacios, G., I. Gomez, R., Moral, Mataix, J., 1995. Nickel accumulation in tomato Plants. Effect on plant growth. Fresenius Environ.Bull.Vol. 4,469-474.
12-Carrier, P., Baryla, A., Havaux, M., 2003. Cadmium distribution and Microlocalization in oilseed rape (Brassica napus) after long growth on cadmium-contaminated seil, planta 216:239-250.
13-Dixit, V., Pandey, V., Shyam, R, 2001. Differential antioxidative responses to heavy metal in roots and leaves of pea (pisum sativum L. CV. Azad). J. of Exp. Bot, Vol, 52 (358), 1101-1109.
14-Kennedy CD., Gonsalves, EAN, 1987. The action of divalent zinc,cadmium, mercury, copper and lead on transport potential and H+ efflux of excised roots. J Exp Bot 38, 800-817.
15-Clijsters H., Van Assche, F., 1985. Inhibition of photosyntheticaheavy metals. Photosyntheticaes 7, 41-40.
16-Barcelo, J., Vazques, M.D., poschenrieder, C., 1988. Structural and ultra structural disorders in heavy metal- treated bush bean plants (phaseolus vulgaris L.) New phytol 108, 37-49.
17-Hegedus, A., Erdei, S., Horvath, G., 2001. Comparative studies of H2O2 detoxifying enzmes in green and greening barley under heavy metal stress. Plant Sci. 160:1085-1093.
18-Moya J. L., Ros, R., picazo, I., 1993. Influence of Cadmium and Nickel on growth, net photosynthesis and carbohydrate distribution in rice plants, photosynthesis research 36, 75-80.
19-Pandolfini, T., Gabbrielli, R., Comparini, C., 1992. Nickel toxicity and peroxidase activity in Seedings of Triticum aestivum L. plant Cell Environ15, 719-725.
20-Peralta-Videa, J.R., Rosa, G. De., Gonzalez, J.H., Gardea-Torresdey, J.L., 2004. Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research. 8, 679-685.
21-Arduini, I., D.L. Godbold., Onnis, A., 1994. Cadmium and copper change root growth and morphology of Pinus pineaand Pinus pinasterseedlings. Physiologia Plantarum. 92,675-680.