بررسی مقایسه ای تاثیرات درمانی سلولهای بنیادی مزانشیمی بر سندرم پلی کیستیک تخمدان در انواع مدل های حیوانی
محورهای موضوعی : زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسمامه لیلا بخشی 1 , سید غلامعلی جورسرایی 2 * , رمضان خان بابایی 3 , مریم غلامی تبار تبری 4 , سیده زهرا بابازاده 5
1 - گروه آموزشی زیست شناسی، دانشکده علوم پایه، واحد قائم شهر، دانشگاه آزاد اسلامی، قائم شهر، ایران
2 - گروه آموزشی علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی بابل، بابل، ایران
3 - گروه زیست شناسی، واحد قائم شهر، دانشگاه آزاد اسلامی، قائم شهر، ایران.
4 - مرکز تحقیقات بهداشت باروری، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران
5 - گروه آنوزشی علوم تشریحی ، دانشکده پزشکی، دانشگاه علوم پزشکی بابل ، بابل ، ایران
کلید واژه: ناباروری, سلول های بنیادی مزانشیمی, مدل حیوانی, سندرم تخمدان پلی کیستیک, درمان با سلولهای بنیادی,
چکیده مقاله :
ناباروری یک مسئله بهداشتی جهانی است. یکی از عوامل اصلی ناباروری در زنان، سندرم تخمدان پلی کیستیک ( PCOS) می باشد. برای درمان اینگونه افراد، روش های متفاوتی به کار گرفته می شود. استفاده از سلول های بنیادی و فرآورده های آن می تواند جایگزین خوبی برای درمان آن باشد. مدل های مختلفی برای القاء PCOS در مدل های حیوانی وجود دارد. سلولهای بنیادی مزانشیمال باعث کاهش اختلال عملکرد تخمدان در موشهای PCOs می شود. تزریق دمی BM-MSC باعث بهبود در روند فولیکولوژنزیس خواهد شد. تزریق سلولهای بنیادی مزانشیمی BM-Hmsc وUC-MSC ، به صورت داخل تخمدانی باعث بهبود روند فولیکوژنزیس می گردد. تزریق سلول بنیادی مزانشیمی AMSCs، با نتیجه مثبتی در باروری همراه است. سلول های بنیادی MSC-EV ، باعث بهبود روند باروری شده و فولیکولوژنز را افزایش می دهند. یکی از دلایل اصلی ناباروری در زنان، تخمدان پلی کیستیک (PCOS) است. استفاده از سلول درمانی برای بیماریهای مختلف از جمله PCOS مطرح است. استفاده از MSC در درمان ناباروری در مراحل تحقیقات پیش بالینی خود قرار دارد. ایمنی و کارایی MSC در درمان ناباروری نیاز به بررسی بیشتر دارد. ما در این مطالعه به بررسی مقایسه ای تاثیرات درمانی سلولهای بنیادی مزانشیمی بر سندرم پلی کیستیک تخمدان در انواع مدل های حیوانی پرداخته ایم.
Infertility is a global health problem. One of the main causes of infertility in women is polycystic ovary syndrome (PCOS). Different methods are used to treat such people. Using stem cells and its products can be a good alternative for its treatment. There are different models for inducing PCOS in animal models. Mesenchymal stem cells reduce ovarian dysfunction in PCOS mice. Tail injection of BM-MSC will improve the process of folliculogenesis. Intraovarian injection of BM-Hmsc and UC-MSC mesenchymal stem cells improves the process of folliculogenesis. AMSCs mesenchymal stem cell injection is associated with a positive result in fertility. MSC-EV stem cells improve fertility and increase folliculogenesis. One of the main causes of infertility in women is polycystic ovary syndrome (PCOS). The use of cell therapy for various diseases including PCOS is considered. The use of MSC in the treatment of infertility is in its preclinical research stages. The safety and efficacy of MSCs in the treatment of infertility needs further investigation. In this study, we have compared the therapeutic effects of mesenchymal stem cells on polycystic ovary syndrome in various animal models.
_|1. Ahmadi M, Rezaei MJ, Fathi FJJoIUoMS. Polycystic ovary induction by Dehydroepiandrostenedione in Mice. 2017;25(3):100-7.
2. Borumandnia N, Majd HA, Khadembashi N, Alaii HJIJoRB. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. 2022;20(1):37.
3. Maharlouei N, Morshed Behbahani B, Doryanizadeh L, Kazemi MJWsHB. Prevalence and pattern of infertility in Iran: A systematic review and meta-analysis study. 2021;8(2):63-71.
4. int/reproductivehealth/topics/infertility/perspective/en WHOJWhww. Infertility is a global public health issue. 2020.
5. Mustafa M, Sharifa A, Hadi J, IIIzam E, Aliya SJIJoD, Sciences M. Male and female infertility: causes, and management. 2019;18:27-32.
6. Faghfoori Z, Fazelian S, Shadnoush M, Goodarzi RJD, research msC, reviews. Nutritional management in women with polycystic ovary syndrome: A review study. 2017;11:S429-S32.
7. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. 2016;2(1):1-18.
8. Rachana B, Priyanka T, Sahana K, Supritha T, Parameshachari B, Sunitha RJGTP. Detection of polycystic ovarian syndrome using follicle recognition technique. 2021;2(2):304-8.
9. Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJJIJoMS. Metabolomic insight into polycystic ovary syndrome—An overview. 2020;21(14):4853.
10. Della Corte L, Foreste V, Barra F, Gustavino C, Alessandri F, Centurioni MG, et al. Current and experimental drug therapy for the treatment of polycystic ovarian syndrome. 2020;29(8):819-30.
11. Yamchi NN, Rahbarghazi R, Bedate AM, Mahdipour M, Nouri M, Khanbabaee RJCB, et al. Menstrual blood CD146+ mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure. 2021;39(8):998-1008.
12. Ning K, Liu S, Yang B, Wang R, Man G, Wang D-e, et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. 2022:101450.
13. Saha S, Roy P, Corbitt C, Kakar SSJC. Application of stem cell therapy for infertility. 2021;10(7):1613.
14. Ghajari G, Heydari A, Ghorbani MJCSCR, Therapy. Mesenchymal stem cell-based therapy and female infertility: limitations and advances. 2022.
15. Zhang W, Sun T, Li Y, Yang M, Zhao Y, Liu J, et al. Application of stem cells in the repair of intervertebral disc degeneration. 2022;13(1):1-17.
16. Yamchi NN, Amjadi F, Beheshti R, Hassanpour M, Shirazi R, Tamadon A, et al. Comparison the therapeutic effects of bone marrow CD144+ endothelial cells and CD146+ mesenchymal stem cells in POF rats. 2023.
17. Rungsiwiwut R, Virutamasen P, Pruksananonda KJRM, Biology. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. 2021;20(1):13-9.
18. Lentscher JA, Decherney AHJCo, gynecology. Clinical presentation and diagnosis of polycystic ovarian syndrome. 2021;64(1):3-11.
19. Cardoso RC, Padmanabhan VJMs. Developmental programming of PCOS traits: insights from the sheep. 2019;7(7):79.
20. Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, et al. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. 2021;280:119753.
21. van Houten ELA, Kramer P, McLuskey A, Karels B, Themmen AP, Visser JAJE. Reproductive and metabolic phenotype of a mouse model of PCOS. 2012;153(6):2861-9.
22. Walters K, Bertoldo M, Handelsman DJBP, Endocrinology RC, Metabolism. Evidence from animal models on the pathogenesis of PCOS. 2018;32(3):271-81.
23. Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. 2020;41(4):bnaa010.
24. Bernuci MP, Szawka RE, Helena CV, Leite CM, Lara HE, Anselmo-Franci JAJE. Locus coeruleus mediates cold stress-induced polycystic ovary in rats. 2008;149(6):2907-16.
25. Kang X, Jia L, Shen XJBRI. Manifestation of hyperandrogenism in the continuous light exposure-induced PCOS rat model. 2015;2015.
26. Ghorbani T, Karimi A, Najafi G, Besharti M, Sharafi MJVCPTQSJ. Therapeutic effects of Vitex (Vitagnus castus) extract on in vitro maturation and fertilization of oocytes in mice affected by polycystic ovary syndrome. 2020;14(54):101-13.
27. Wu X-Y, Li Z-L, Wu C-Y, Liu Y-M, Lin H, Wang S-H, et al. Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats. 2010;57(3):201-9.
28. Ye R, Yan C, Zhou H, Huang Y, Dong M, Zhang H, et al. Brown adipose tissue activation by cold treatment ameliorates polycystic ovary syndrome in rat. 2021;12:744628.
29. Shannon M, Green B, Willars G, Wilson J, Matthews N, Lamb J, et al. The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction. 2017;265:97-105.
30. Klenke U, Hutchins BIJFiE. Using bisphenol-A to study the onset of polycystic ovarian syndrome. 2011;2:12.
31. Merlo E, Silva IV, Cardoso RC, Graceli JBJJoT, Environmental Health PB. The obesogen tributyltin induces features of polycystic ovary syndrome (PCOS): A review. 2018;21(3):181-206.
32. Ryu Y, Kim SW, Kim YY, Ku S-YJIjoms. Animal models for human polycystic ovary syndrome (PCOS) focused on the use of indirect hormonal perturbations: a review of the literature. 2019;20(11):2720.
33. Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, et al. How to choose the suitable animal model of polycystic ovary syndrome? 2018;1(02):95-113.
34. Joksimovic Jovic J, Sretenovic J, Jovic N, Rudic J, Zivkovic V, Srejovic I, et al. Cardiovascular properties of the androgen-induced PCOS model in rats: the role of oxidative stress. 2021;2021.
35. Ongaro L, Salvetti NR, Giovambattista A, Spinedi E, Ortega HHJLS. Neonatal androgenization-induced early endocrine–metabolic and ovary misprogramming in the female rat. 2015;130:66-72.
36. Divoux A, Erdos E, Whytock K, Osborne TF, Smith SRJC. Transcriptional and DNA methylation signatures of subcutaneous adipose tissue and adipose-derived stem cells in PCOS women. 2022;11(5):848.
37. Park H-S, Cetin E, Siblini H, Seok J, Alkelani H, Alkhrait S, et al. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. 2023;24(13):11151.
38. Xie Q, Xiong X, Xiao N, He K, Chen M, Peng J, et al. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. 2019;2019.
39. Kalhori Z, Azadbakht M, Mehranjani MS, Shariatzadeh MAJC. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. 2018;20(12):1445-58.
40. Chugh RM, Park H-s, El Andaloussi A, Elsharoud A, Esfandyari S, Ulin M, et al. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. 2021;12:1-19.
41. Li Y, Guo J, Deng S, Gao Z, Liu Y, Gu QJAS. Fibrin Facilitates Mesenchymal Stem Cells to Ameliorate Rats with Polycystic Ovary Syndrome. 2020;10(10):3598.
42. Zhao Y, Tao M, Wei M, Du S, Wang H, Wang XJAc, nanomedicine,, et al. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). 2019;47(1):3804-13.
43. Cao M, Zhao Y, Chen T, Zhao Z, Zhang B, Yuan C, et al. Adipose mesenchymal stem cell–derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. 2022;288:121739.
44. Park H-S, Cetin E, Siblini H, Al-Hendy AJF, Sterility. Infertility treatment using human mesenchymal stem cell derived extracellular vesicle in letrozole induced pcos mouse model. 2021;116(3):e120.
45. Ali SR, Somayeh S, Maria GP, Mahna M, Massood E. The effect of human menstrual blood-derived stem cells on ovarian folliculogenesis, angiogenesis and collagen volume in female rats affected by the polycystic ovary syndrome. 2023.
46. Alves ED, Benevenuto LGD, Anselmo-Franci JA, Ervolino E, Morais BP, Barros MA, et al. Endocrine Activities Modulated by Adipose-Mesenchymal Stem Cell in an Animal Model Induced to Polycystic Ovary Syndrome.
47. Inhorn MC, Patrizio PJHru. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. 2015;21(4):411-26.
48. Wang Q, Deng H, Cheng K, Huang Z, Yin X, Zhou Y, et al. Manual acupuncture for the infertile female with polycystic ovary syndrome (PCOS): study protocol for a randomized sham-controlled trial. 2019;20:1-9.
49. Morgante G, Massaro M, Di Sabatino A, Cappelli V, De Leo VJGE. Therapeutic approach for metabolic disorders and infertility in women with PCOS. 2018;34(1):4-9.
50. Facchinetti F, Orru B, Grandi G, Unfer VJGE. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. 2019;35(3):198-206.
51. Sharma S, Mathur DK, Paliwal V, Bhargava PJTJoc, dermatology a. Efficacy of metformin in the treatment of acne in women with polycystic ovarian syndrome: a newer approach to acne therapy. 2019;12(5):34.
52. Ericsson AC, Crim MJ, Franklin CLJMm. A brief history of animal modeling. 2013;110(3):201.
53. Kafali H, Iriadam M, Ozardalı I, Demir NJAomr. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. 2004;35(2):103-8.
54. Caplan AI, Bruder SPJTimm. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. 2001;7(6):259-64.
55. Guo L, Zhao RC, Wu YJEh. The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. 2011;39(6):608-16.
56. Prayitno GD, Lestari K, Sartika CR, Djuwantono T, Widjaya A, Muharam R, et al. Potential of Mesenchymal Stem Cells and Their Secretomes in Decreasing Inflammation Markers in Polycystic Ovary Syndrome Treatment: A Systematic Review. 2023;10(1):3.
57. Gao L, Huang Z, Lin H, Tian Y, Li P, Lin SJRs. Bone marrow mesenchymal stem cells (BMSCs) restore functional endometrium in the rat model for severe Asherman syndrome. 2019;26(3):436-44.
58. Zhao J, Zhang Q, Wang Y, Li YJRS. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. 2015;22(2):181-8.
59. Wang J, Ju B, Pan C, Gu Y, Zhang Y, Sun L, et al. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. 2016;39(4):1553-60.
60. Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour MJLS. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. 2021;274:119336.
|_