طراحی الگوی کاربست هوش تجاری در بازار رمز ارزها با استفاده از نظریه داده بنیاد
محورهای موضوعی : فصلنامه تحلیل بازار سرمایهپرویز سعیدی 1 * , علی نوروزی جویباری 2 , مریم بخاراییان خراسانی 3 , آرش نادریان 4
1 - گروه مدیریت و حسابداری،واحد علی اباد کتول،دانشگاه آزاد اسلامی ، علی اباد کتول ،ایران.
2 - گروه مدیریت مالی ، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران
3 - گروه حسابداری، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران
4 - گروه حسابداری، واحد علیآباد کتول، دانشگاه آزاد اسلامی، علیآباد کتول، ایران.
کلید واژه: هوش تجاری, بازار رمز ارز, مهندسی مالی, نظریه داده بنیاد,
چکیده مقاله :
بازار رمزارزها با چالش های متعددی در زمینه نوسان قیمت، فرآیند پرداخت ، امنیت و مشکلات حقوقی و مالی مواجه است. کاربست هوش تجاری در بازار رمز ارزها منجر به درک ماهیت بازار، بکارگیری استراتژی های مناسب، اتخاذ تصمیمات کارآمد و به حداکثر رساندن سود می¬شود. پژوهش حاضر با هدف طراحی الگوی کاربست هوش تجاری در بازار رمزارزها انجام شده است. روش تحقیق کیفی و مبتنی بر نظریه پردازی داده¬بنیاد می¬باشد. برای گردآوری اطلاعات از مصاحبه¬های نیمه¬ساختار¬یافته و برای تجزیه و تحلیل اطلاعات از روش استراوس و کوربین استفاده شده است. نمونه¬گیری به روش نظری و با بهره¬گیری از تکنیک¬های هدفمند – قضاوتی و گلوله¬برفی انجام شده است. نتایج تحلیل مصاحبه¬های انجام شده با 21 نفر از اساتید و کارشناسان حوزه تجارت الکترونیک، حسابداری، مالی، مدیریت و کسب و کار طی فرآیند کدگذاری باز، محوری و انتخابی با استفاده از نرم افزار Maxqda 2018 منجر به ارائة الگوی کاربست هوش تجاری در بازارهای رمزارز با 6 مقوله، 47 مفهوم و 144 کد شد.
The cryptocurrency market faces many challenges in terms of price volatility, payment process, security, and legal and financial problems. Applying business intelligence in the cryptocurrency market leads to understanding the nature of the market, applying appropriate strategies, making efficient decisions, and maximizing profits. The present study aimed to design a pattern of business intelligence application in the cryptocurrency market. The research method is qualitative and based on Grounded Theory. Semi-structured interviews were used to collect data and Strauss and Corbin method was used to analyze the data. Sampling was performed theoretically using targeted-judgmental techniques and snowballs. The results of the analysis of interviews conducted with 21 professors and experts in the field of e-commerce, accounting, finance, management and business during the open, axial and selective coding process using Maxqda 2018 software led to the presentation of a business intelligence application model in cryptocurrency markets were coded with 6 categories, 47 concepts and 144 codes
امیرشکاری، نیما؛ لطیفی، زهرا. (1397). ارزهای دیجیتال و نظام مالیاتی؛ فرصت ها، چالش ها و استراتژی ها. هشتمین همایش سالانه بانکداری الکترونیک و نظام های پرداخت. ص 1-30. بابازاده، یوسف؛ فقهی هنرمند، ناصر؛ پاسیانی، محمد؛ علوی متین، یعقوب. (1400). مدل مفهومی شاخص های تسهیل کننده استفاده از رمزارزها در مبادلات بین المللی در شرایط تحریم. فصلنامه مدیریت کسب و کارهای بین المللی. سال چهارم. شماره 1. صص 167-188. تقوا، محمدرضا؛ جلاییان زعفرانی، زهرا. (1399). توسعه مدل اکوسیستم شناختی رمزارز. مجله تازه های علوم شناختی. دوره 22. شماره 2. صص 102-110. صادقیان، محمدکاظم؛ یاوری، کاظم؛ علوی راد، عباس. (1400). شناسایی متغیرهای موثر بر قیمت رمزارز بیت کوین؛ رویکرد میانگین گیری بیزین و حداقل مربعات متوسط وزنی. فصلنامه مهندسی مالی و مدیریت اوراق بهادار. شماره چهل و ششم. صص 517-539. نوری، مهدی؛ نواب پور، علیرضا. (1396). طراحی چارچوب مفهومی سیاستگذاری ارزهای دیجیتال در اقتصاد ایران. فصلنامه علمی پژوهشی سیاستگذاری عمومی، دوره 3، شماره 4، صص 51-78. Alexander, C., & Dakos, M. (2019). A critical investigation of cryptocurrency data and analysis. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3382828 Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2019). Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios. Journal of International Financial Markets, Institutions and Money, 61, 37-51. https://doi.org/10.1016/j.intfin.2019.02.003 Billah, M. M. (2019). Cryptocurrency? Its halal alternative model. Halal Cryptocurrency Management, 3-14. https://doi.org/10.1007/978-3-030-10749-9_1 Bouri, E., Shahzad, S. J. H., & Roubaud, D. (2019). Co-explosivity in the cryptocurrency market. Finance Research Letters, 29, 178-183. Božič, K., & Dimovski, V. (2019). Business intelligence and analytics for value creation: The role of absorptive capacity. International journal of information management, 46, 93-103. Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency market. Research in International Business and Finance, 46, 141-148. Chokun, J. (2016), Who Accepts Bitcoins as Payment? List of Companies, Stores, Shops, IGI Global, (accessed 11 June 2016). Ciaian, P., Rajcaniova, M. and Kancs, D.A. (2016), “The economics of BitCoin price formation”, Applied Economics, Vol. 48 No. 19, pp. 1799-1815. Cocco, L., Concas, G. and Marchesi, M. (2017), “Using an artificial financial market for studying a cryptocurrency market”, Journal of Economic Interaction and Coordination, Vol. 12 No. 2, pp. 345-365. Corbin, J., & Strauss, A. L. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory. SAGE. Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson College Division. Katsiampa, P. (2017), “Volatility estimation for Bitcoin: a comparison of GARCH models”, Economics Letters, Vol. 158, pp. 3-6. Linton, M., Teo, E.G.S., Bommes, E., Chen, C.Y. and H€ardle, W.K. (2017), “Dynamic Topic Modelling for Cryptocurrency Community Forums”, Applied Quantitative Finance, Springer, pp. 355-372. Hyseni, A. (2017). Self service business intelligence: An analysis of tourists preferences in Kosovo. 2017 UBT International Conference. https://doi.org/10.33107/ubt-ic.2017.186 McFadzean, E.(2007). Developing a Proposal: A Nine Step Process. Moyer, A. C. (2020). Self-Evolving Data Collection Through Analytics and Business Intelligence to Predict the Price of Cryptocurrency [Unpublished doctoral dissertation]. the Russ College of Engineering and Technology of Ohio University. O'Leary, D. E. (2018). Open information enterprise transactions: Business intelligence and wash and spoof transactions in blockchain and social commerce. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3246740 Peng, Y., Albuquerque, P.H.M., de S_a, J.M.C., Padula, A.J.A. and Montenegro, M.R. (2018), “The best of two worlds: forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression”, Expert Systems with Applications, Vol. 97,pp. 177-192. Richard, S. (2018). Bitcoin cryptocurrency: A review. American Research Journal of Computer Science and Information Technology, 3(1). https://doi.org/10.21694/2572-2921.18002 Richards, G., Yeoh, W., Chong, A. Y. L., & Popovič, A. (2019). Business intelligence effectiveness and corporate performance management: an empirical analysis. Journal of Computer Information Systems, 59(2), 188-196. Urquhart, A. (2017), “Price clustering in Bitcoin”, Economics Letters, Vol. 159, pp. 145-148. Zhu, Y., Dickinson, D. and Li, J. (2017), “Analysis on the influence factors of Bitcoin’s price based on VEC model”, Financial Innovation, Vol. 3 No. 1, p. 3, doi: 10.1186/s40854-017-00540. Wątorek, M., Drożdż, S., Kwapień, J., Minati, L., Oświęcimka, P., & Stanuszek, M. (2020). Multiscale characteristics of the emerging global cryptocurrency market. Physics Reports. Yasir, M., Attique, M., Latif, K., Chaudhary, G. M., Afzal, S., Ahmed, K., & Shahzad, F. (2021). Deep-learning-assisted business intelligence model for cryptocurrency forecasting using social media sentiment. Journal of Enterprise Information Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/jeim-02-2020-0077