طراحی و شبیهسازی ساختاری پلاسمونیکی مبتنی بر گرافن شناور جهت تولید و افزایش هارمونیک سوم
محورهای موضوعی : مهندسی الکترونیکمحمد جواد رحیم زاده 1 , رحیم غیور 2 , مریم محیط پور 3
1 - هیات علمی دانشگاه آزاد اسلامی
2 - گروه مهندسی برق، دانشگاه آزاد اسلامی شیراز
3 - گروه مهندسی برق- واحد شیراز، دانشگاه آزاداسلامی، شیراز، ایران
کلید واژه: بهره توان تبدیلی, گرافن شناور, موجبر پلاسمونیک, هارمونیک سوم,
چکیده مقاله :
در این مقاله بر اساس ویژگی غیرخطی گرافن و قراردادن لایه¬ای از گرافن بر روی بستر مناسب، یک موجبر پلاسمونیکی مبتنی بر گرافن شناور جهت تولید هارمونیک سوم برای اولینبار پیشنهاد شده است. نقش پارامترهای مختلف گرافن تکلایه در خاصیت رزونانس و رسانایی غیرخطی گرافن تعیین شده است. نشاندادهشده است که با تغییر پتانسیل الکتروشیمیایی گرافن (μcg)، میتوان THG را که بر اساس خواص غیرخطی گرافن تکلایه است، تنظیم کرد. روش محاسباتی تفاضل محدود در حوزه زمان (FDTD) برای شبیهسازی عددی و تجزیهوتحلیل ساختار پیشنهادی در محدوده طولموج مادونقرمز میانی استفاده شده است. در شبیهسازیهای ما بهره توان تبدیلی در حدود 48.08- دسیبل محاسبه شد که افزایش قابلتوجهی نسبت به سایر منابع نشان میدهد. استفاده از نمونههای گرافن باکیفیت بالا و شناور کردن آنها و در نهایت استفاده از دیالکتریک Si3N4 عملکرد ساختار پیشنهادی را در مقایسه با سایر مراجع، بهبود بخشیده است. نتیجه این کار میتواند برای توسعه طیف وسیعی از برنامه¬های کاربردی مهم مانند تولید فرکانس جدید، طیفسنجی، سنجش شیمیایی و سوئیچها در محدوده فرکانسمادون قرمز میانی مورداستفاده قرار گیرد.
In this article, based on the nonlinear property of graphene and placing a layer of graphene on a suitable substrate, a plasmonic waveguide based on suspended graphene has been proposed for the first time to enhance third harmonic generation(THG). The role of different parameters of single-layer graphene in resonance properties and nonlinear conductivity of graphene has been determined. It is shown that by changing the electrochemical potential of graphene, it is possible to tune the THG, which is based on the nonlinear properties of monolayer graphene. The finite difference computing method in the time domain (FDTD) has been used for numerical simulation and analysis of the proposed structure in the mid-infrared wavelength range. In our simulations, the conversion efficiency was calculated at about -48.08 dB, which shows a significant increase compared to other sources. Using high quality graphene samples and floating them and finally using Si3N4 dielectric has improved the performance of the proposed structure compared to other references. The result of this work can be used to develop a wide range of important applications such as new frequency generation, signal processing, chemical sensing and switches in the MIR frequency range.
[1] J. Li, T. Zhang, L. Chen, '' High-Efficiency Plasmonic Third-Harmonic Generation with Graphene on a Silicon Diffractive Grating in Mid-infrared Region'', Nano Express, vol. 13, no. 338, 25 October 2018, (doi:10.1186/s11671-018-2750-8).
[2] Z. Wang, V. Kalathingal, Y. Wei Ho, T X. Hoang, H. Chu, Y. Guo, J C. Viana-Gomes, G. Eda, C. A. Nijhuis, ''Phase Matching via Plasmonic Modal Dispersion for Third Harmonic Generation'', Advanced Science published by Wiley-VCH GmbH, Volume 9, no 21, 25 July 2022, (doi: 10.1002/advs.202201180). .
[3] C H. Costa, LFC. Pereira, G. Bezerra, ''Light propagation in quasiperiodic dielectric multilayers separated by graphene'', Phys. Rev, Vol. 96, pp. 12-15 September 2017, (doi.org/10.1103/PhysRevB.96.125412). .
[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, ''The electronic properties of graphene'', Rev. Mod. Phys, Vol. 81, no. 1, pp. 109–162, January - March 2009, (doi:10.1103/RevModPhys.81.109). .
[5] C. Beckerleg, J. C.Thomas, I. Zeimpekis, M. H.Samuel,C. Chris, W.H. Daniel, E. Hendry, ''Cavity enhanced third harmonic generation in graphene'', Applied Physics Letters, Vol. 112, no. 1, pp. 11102-11106, January 2018, (https://doi.org/10.1038/s41565-018-0145-8). .
[6] W. Yindi, L. Hongxia , W. Shulong , C. Ming , Z. Haifeng , Q. Yanbin ''Electrical Phase Control Based on Graphene Surface Plasmon Polaritons in Mid-infrared'', Nanomaterials, Vol. 10, March 2020, (doi:10.3390/nano10030576). .
[7] B. Jin1, T. Guo, C. Argyropoulos, ''Enhanced third harmonic generation with graphene metasurfaces'', Journal of Optics, Vol. 19, no. 919, pp. 345-349, 2017, (doi.org/10.1088/2040-8986/aa8280). .
[8] N. A. Savostianova, S. A. Mikhailov, ''Third harmonic generation from graphene lying on different substrates: optical-phonon resonances and terference effects'', Optics Express, VOL. 25, PP. 3268-3285, 2017, (doi.org/10.1364/OE.25.003268). .
[9] H. Nasari, M. S. Abrishamian, ''Electrically tunable, plasmon resonance enhanced,terahertz third harmonic generation via graphene'', RSC Adv,VOL. 6, PP. 50190-50200. 2016, (doi: 10.1039/c6ra08086c). .
[10] J. Wu, S. Guo, Z. Li, X. Li, H. Xue, Z. Wang, ''Graphene Hybrid Surface Plasmon Waveguide with Low Loss Transmission'', Plasmonics, March 2021, (doi.org/10.1007/s11468-020-01181-z). .
[11] A.N. Grigorenko, M. Polini, K.S. Novoselov, ''Graphene plasmonics'', Nature Photonics, vol. 6, PP. 749–758, 2012, (doi:10.1038/NPHOTON.2012.262). .
[12 ] S. Bahadori-Haghighi, R. Ghayour, M. H. Sheikhi, ''Design and analysis of low loss plasmonic waveguide and directional coupler based on pattern-free suspended graphene sheets'', Carbon, Vol. 129,no. 129, pp. 653-660, 2018, (doi.org/10.1016/j.carbon.2017.12.066). .
[13] K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, ''Temperature-dependent transport in suspended graphene'', Phys. Rev. Lett. 101, (2008) 096802, (doi.org/10.1103/PhysRevLett.101.096802). .
[14] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, ''Ultrahigh electron mobility in suspended graphene, Solid State Commun'', VoL. 146, PP. 9–10, Pages 351-355146, 2008, (doi:10.1016/j.ssc.2008.02.024). .
[16] Y. LIU, S. ZHU, Q. ZHOU, Y. CAO, Y. FU, L. GAO, H. CHEN, Y. XU, ''Enhanced third-harmonic generation induced by nonlinear field resonances in plasmonic-graphene metasurfaces'', Optics Express, Vol. 28, No. 9, 27 April 2020, (doi.org/10.1364/OE.391294). .
[17] M.Sedaghat Nejad, M.Ghasempour Ardakani, ''Significant enhancement of third harmonic generation in graphene layers placed on a random grating supporting plasmonic Anderson localized states'', Optics & Laser Technology, Vol. 161, June 2023, 109123, (doi.org/10.1016/j.optlastec.2023.109123). .
[18] M.J. Rahimzadeh, R.Ghayour, M.Mohitpour, ''Enhancing third harmonic generation using a mid-infrared graphene plasmonic waveguide'', Optical and Quantum Electronics, Vol. 55, September 2023, (doi.org/10.1007/s11082-023-05256-z). .
[19] Z. Qi, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, S. Qin, ''Electrically tuneable directional coupling and switching based on multimode interference effect in dielectric loaded graphene plasmon waveguides'', Journal of Optics, Vol. 18, no. 6 18, 2016, (doi.10.1088/2040-8978/18/6/065003). .
[20] J. Cardenas, C.B. Poitras, J.T. Robinson, K. Preston, L. Chen, M. Lipson, ''Low loss etchless silicon photonic waveguides'', Opt. Express, Vol. 17, no. 6, pp. 4752-4757, 2009, (doi. 10.1364/oe.17.004752). .
[21] R. W. Boyd, ''Nonlinear Optics'', Third Edition, 28 March, 2008, Elsevier.
[22] W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, ''Dielectric loaded graphene plasmon waveguide'', Optics Express, Vol. 23, no. 4, pp. 5147-5153, 2015, (doi.10.1364/OE.23.005147).
[23] U. S. Inan, R. A. Marshall, ''Numerical Electromagnetics'', Cambridge University Press, June 2012, (doi.10.1017/CBO9780511921353).
[24] S. D. Gedney, ''Introduction to the Finite-Difference Time – Domain (FDTD) method for electromagnetic'' , Morgan &Claypool, 2011.
[25] https://refractiveindex.info, Kischkat et al. 2012.
[26] C. JL, Ve.N, S. JE. ''Third order optical nonlinearity of graphene'', New Journal of Physics, Volume. 16, May 2014, (doi.10.1088/1367-2630/16/5/053014).
[27] M. J. Rahimzadeh , R. Ghayour, M. Mohitpour,'' Enhancing third harmonic generation using a mid-infrared graphene plasmonic waveguide'', Optical and Quantum Electronics, vol. 981, September 2023, (DOI:10.1007/s11082-023-05256-z).