تشخیص تومور مغزی در تصاویر رزونانس مغناطیسی با استفاده از شبکه عصبی کانولوشنی عمیق
محورهای موضوعی : مهندسی الکترونیکمیترا افسری نژاد 1 , نبي اله شیری 2 * , رامین براتی 3
1 - گروه مهندسی برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه مهندسی برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 - گروه مهندسی برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: تومور مغزی, شبکه عصبی کانولوشنی, تصویربرداری پزشکی, یادگیری عمیق, طبقهبندی تصویر, ,
چکیده مقاله :
در این مقاله، تشخیص تومور مغز از طریق به کارگیری تکنیکهای پیشرفته یادگیری عمیق مورد بررسی قرار گرفته است. رویکرد این مطالعه شامل توسعه و آموزش یک معماری جامع از شبکه عصبی کانولوشنی (CNN) با بهرهگیری از یک مجموعه داده گسترده از تصاویر رزونانس مغناطیسی مغز (MRI) می¬باشد، مدل پیشنهادی در طبقهبندی بافت معمولی مغز و مناطق تحت تأثیر تومور بسیار توانمند است. این معماری شامل لایههای متعدد از جمله لایههای کانولوشنی، نرمالسازی دستهای و لایههای پولینگ است که در نهایت به یک لایه قوی طبقهبندی منجر میشود. از طریق آموزش دقیق و بهینهسازی، شبکه عصبی کانولوشنی معرفیشده توانسته است در طبقهبندی تومور مغز به دقت بالایی دست یابد. اثربخشی این مدل پیشنهادی از طریق آزمایشات جامع به نمایش گذاشته شده که نشاندهنده قابلیت آن در تشخیص دقیق تومور مغز است.
In this paper, brain tumor detection is addressed through the application of advanced deep-learning techniques. The approach involves the development and training of a comprehensive convolutional neural network (CNN) architecture. Leveraging an extensive dataset of brain magnetic resonance imaging (MRI), the proposed model expresses its proficiency in the classification of normal brain tissue and tumor-affected regions. The architecture encompasses multiple layers, including convolutional, batch normalization, and pooling layers, culminating in a robust classification layer. Through rigorous training and optimization, the introduced CNN achieves a high level of accuracy in brain tumor classification. The effectiveness of the proposed model is showcased through comprehensive experimentation, demonstrating its potential to significantly contribute to the medical field’s efforts in precise brain tumor diagnosis.
[1] Wang, Zhuo, and Naveen Verma. "A low-energy machine-learning classifier based on clocked comparators for direct inference on analog sensors." IEEE Transactions on Circuits and Systems I: Regular Papers 64, no. 11 (2017): 2954-2965
[2] Lee, Edward H., and S. Simon Wong. "24.2 A 2.5 GHz 7.7 TOPS/W switched-capacitor matrix multiplier with co-designed local memory in 40nm." In 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 418-419. IEEE, 2016.
[3] Wang, Zhuo, Jintao Zhang, and Naveen Verma. "Realizing low-energy classification systems by implementing matrix multiplication directly within an ADC." IEEE transactions on biomedical circuits and systems 9, no. 6 (2015): 825-837.
[4] Buhler, Fred N., Adam E. Mendrela, Yong Lim, Jeffrey A. Fredenburg, and Michael P. Flynn. "A 16-channel noise-shaping machine learning analog-digital interface." In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1-2. IEEE, 2016.
[5] Zhang, Jintao, Zhuo Wang, and Naveen Verma. "A machine-learning classifier implemented in a standard 6T SRAM array." In 2016 ieee symposium on vlsi circuits (vlsi-circuits), pp. 1-2. IEEE, 2016.
[6] Solomatine, Dimitri P., and Durga L. Shrestha. "AdaBoost. RT: a boosting algorithm for regression problems." In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 2, pp. 1163-1168. IEEE, 2004.
[7] Dreiseitl, Stephan, and Lucila Ohno-Machado. "Logistic regression and artificial neural network classification models: a methodology review." Journal of biomedical informatics 35, no. 5-6 (2002): 352-359.
[8] Li, Yaoyong, Kalina Bontcheva, and Hamish Cunningham. "SVM based learning system for information extraction." In International Workshop on Deterministic and Statistical Methods in Machine Learning, pp. 319-339. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
[9] Übeyli, Elif Derya. "Implementing automated diagnostic systems for breast cancer detection." Expert systems with Applications 33, no. 4 (2007): 1054-106
[10] Abonyi, Janos, and Ferenc Szeifert. "Supervised fuzzy clustering for the identification of fuzzy classifiers." Pattern Recognition Letters 24, no. 14 (2003): 2195-2207.
[11] Karabatak, Murat, and M. Cevdet Ince. "An expert system for detection of breast cancer based on association rules and neural network." Expert systems with Applications 36, no. 2 (2009): 3465-3469.
[12] Marcano-Cedeño, Alexis, Joel Quintanilla-Domínguez, and Diego Andina. "Breast cancer classification applying artificial metaplasticity algorithm." Neurocomputing 74, no. 8 (2011): 1243-1250.
[13] Karthiga, R., G. Usha, N. Raju, and K. Narasimhan. "Transfer learning based breast cancer classification using one-hot encoding technique." In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 115-120. IEEE, 2021.
[14] Zhao, Chumin, Jerzy Kanicki, Anastasios C. Konstantinidis, and Tushita Patel. "Large area CMOS active pixel sensor x‐ray imager for digital breast tomosynthesis: analysis, modeling, and characterization." Medical physics 42, no. 11 (2015): 6294-6308.
[15] Jayaraj, Akshay, Imon Banerjee, and Arindam Sanyal. "Common-source amplifier based analog artificial neural network classifier." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5. IEEE, 201
[16] Wang, Zhuo, Kyong Ho Lee, and Naveen Verma. "Overcoming computational errors in sensing platforms through embedded machine-learning kernels." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, no. 8 (2014): 1459-1470.
[17] Hua, Ruobing, and Arindam Sanyal. "39fJ Analog Artificial Neural Network for Breast Cancer Classification in 65nm CMOS." In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 436-439. IEEE, 2019.
[18] Carrasco-Robles, Manuel, and Luis Serrano. "A novel CMOS current mode fully differential tanh (x) implementation." In 2008 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2158-2161. IEEE, 2008.
[19] Amari, Shun-ichi. "Backpropagation and stochastic gradient descent method." Neurocomputing 5, no. 4-5 (1993): 185-196.
[20] Selvathi, D., and R. Deiva Nayagam. "FPGA implementation of on-chip ANN for breast cancer diagnosis." Intelligent Decision Technologies 10, no. 4 (2016): 341-352.
[21] Ghahramani, Marzieh, and Nabiollah Shiri. "Brain tumour detection in magnetic resonance imaging using Levenberg–Marquardt backpropagation neural network." IET Image Processing 17, no. 1 (2023): 88-103.
[22] Shirali, Armaghan, and Nabiollah Shiri. "Diagnosis of brain tumours by MRI binarisation with variable fuzzy level." IET Image Processing 14, no. 16 (2020): 4269-4276.
[23]nn, J.C.: ‘A fuzzy relative of the ISODATA process and its use in detectingcompact well-separated clusters’, J. Cybern., 1973, 3, pp. 3, pp. 32–57
[24] Hasan, A.M., Jalab, H.A., Meziane, F., et al.: ‘Combining deep andhandcrafted image features for MRI brain scan classification’, IEEE Access,2019, 7, pp. 79959–79967
[25] Razzak, M.I., Imran, M., Xu, G.: ‘Efficient brain tumor segmentation withmultiscale two-pathway-group conventional neural networks’, IEEE. J.Biomed. Health. Inf., 2019, 23, (5), pp. 1911–1919
[26] Zadeh, L.A.: ‘Fuzzy sets, information and control’, Inf. Control, 1965, 8, (3),pp. 338–353