مروری بر بودارکننده های مدرن گاز طبیعی: بررسی ساختاری، روش های سنتز و کاربردها
محورهای موضوعی : شیمی کاربردینهال مجدالدین 1 , سحر بنی یعقوب 2 * , کامبیز تحویلداری 3 , امیر وحید 4
1 - دانشجوی دکترای شیمی کاربردی، دانشکده علوم و فناوری¬های همگرا، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.
2 - استادیار شیمی معدنی، دانشکده علوم و فناوری¬های همگرا، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.
3 - دانشیار شیمی کاربردی، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران.ن
4 - استادیار شیمی تجزیه، پژوهشگاه صنعت نفت، تهران، ایران ، صنعت نفت، تهران، ایران
کلید واژه: بودارکننده, بودارکننده, گاز طبیعی, گوگرد, ایمنی.,
چکیده مقاله :
افزایش ایمنی و بازده گاز طبیعی، برای مصارف گسترده ای که در تأمین انرژی مورد نیاز صنایع گوناگون و مصرف کنندگان خانگی در سراسر جهان دارد، از مسائل بسیار مهم است. به عبارتی بدون درنظرگرفتن عوامل ایمنی که مانع نشت گاز، انفجار و آتش سوزی می شوند، بهره برداری از این انرژی فسیلی بسیار پرخطر است. بنابراین، برای غلبه بر این مشکل ها، تزریق ترکیب های شیمیایی مناسب به گاز طبیعی که مصرف کنندگان بتوانند وجود گاز را در هوا تشخیص دهند، حیاتی است. تاکنون ترکیب های زیادی برای تزریق به گاز طبیعی تحت عنوان بودارکننده، فرموله و تولید شده اند. این ترکیب ها به دلیل بوی خاص متعفن و تندی که دارند، در صورت نشت گاز به راحتی در غلظت های بسیار پایین توسط هر فردی قابل شناسایی هستند. همه مواد بودارکننده در دو گروه کلاسیک و مدرن جای می گیرند. در این پژوهش، به مطالعه مفهومی انواع بودارکننده های مدرن گاز طبیعی پرداخته شده است. همچنین، پس از بررسی اصول شیمیایی و تاریخچه اکتشاف این ترکیب ها، مهم ترین ویژگی های بودارکننده ها برای دستیابی به مناسب ترین ماده بودارکننده و روش های سنتز آن ها ارائه شده اند.
Improving safety and increasing efficiency of utilization of natural gas is very important issue due to its wide use as one of the main energy sources for industry and home consumers all around the world. On the other hand, utilization of this clean fossil energy is too risky without considering safety cautions regarding gas leakage, explosion, and flammability. Due to the above mentioned facts and to overcome the problems, it is vital to inject proper compounds to natural gas to make it easily detectable by any person. So far, various types of compounds as "odorant" have been formulated and produced to inject to natural gas. In case of gas leakage, these compounds at low concentration are easily detectable by any person, due to their specific and pungent stink odor. Odorants are classified into classical and modern categories. In this article, a comprehensive study on different aspects of modern natural gas odorants and their odorization process has been performed. In addition, with studying basic chemistry and history of these compounds, the most important properties of odorants have been presented in order to help to recognize the most proper odorant for a specific application and its synthesis methods.
[1] Robertson ST. History of gas odorization. In: GTI electronic symposium proceedings. Chicago: Global Taiwan Institute; 1980.
[2] Tenkrat D, Hlincik T, Prokes O. Natural gas odorization. IntechOpen. 2010;1:95-103. doi: 10.5772/9825
[3] Quaglio J. Wassergas als der Brennstoff der Zukunft: Strong's patent zur bereitung von heizgas in Verbindung mit Lowe's Verfahren. Austria: J.F.Bergmann Publisher; 1880.
[4] Muhlbauer WK. Distribution systems in pipeline risk management manual. Gulf professional publishing. 2004;3:223-242. doi: 10.1016/B978-075067579-6/50014-5
[5] Fant EE. Odorization: A regulatory perspective. US: Institute of Gas Technology; 1993.
[6] Henderson DF. Large volume odorization, installation, operation, and maintenance. US: Institute of Gas Technology; 1993.
[7] Fink JK. Petroleum engineer’s guide to oil field chemicals and fluids. 2nd edition. Texas: Gulf Professional Publishing; 1989.
[8] Fries KR. Consumer survey on the olfactory evaluation of different natural gas odorants. Germany: Symrise AG; 2015.
[9] Oudman P. Odorization and odorant monitoring practices at canadian western natural gas company limited. US: Institute of Gas Technology. 1993.
[10] Ivanov I, Strmen J, Jones L. Pre-odorization or pickling of new natural gas pipe. Pipeline & Gas Journal. 2009;236(11):48-54.
[11] Teymoury M, Samadi-M A, Vahid A, Miranbeigi A. Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in-situ approach. Fuel Processing Technology. 2013;116:257-264. doi.org/10.1016/j.fuproc.2013.07.009
[12] Vahid A, Mazochi M, Baniyaghoob S. Deep desulfurization of naphtha using CMK containing nickel metal nanoparticles. Farayandno. 2022;67:31-41. [Persian]. doi: 20.1001.1.17356466.1398.14.67.3.4
[13] Rezaei P, Baniyaghoob S, Hosseini Sadr M. Fe3O4@SiO2@AgO Nanocomposite: Synthesis, Characterization and investigation of its photocatalytic application. Journal of Electronic Materials. 2019;48:3285-3296. doi.org/10.1016/j.coelec.2020.02.007
[14] Capelli L, Sironi S, Del Rosso R. Odour emission factors: fundamental tools for air quality management. Chemical Engineering Transactions. 2014;40:193-198. doi: 10.3303/CET1440033
[15] Borup RL, Kusoglu A, Neyerlin KC, Mukundan R, Ahluwalia RK, Cullen DA. Recent developments in catalyst-related PEM fuel cell durability. Current opinion in electrochemistry. 2020;21:192-200. doi.org/10.1016/j.coelec.2020.02.007
[16] Liszka K, Laciak M, Oliinyk A. Analysis of new generation odorants applicability in the polish natural gas distribution network. AGH Drilling, Oil & Gas. 2014;31(1):59-71. doi: 10.7494/drill.2014.31.1.59
[17] Schmeer F, Reimert R. Gas-und Wasserfach. Gas-Erdgas. 2003;144(1):52-58.
[18] Mansfeld G, Eilers J, Berteam H-J, Wolf F, Kaesler H. Gas odorization using ketones. EOn Ruhrgas AG, Symrise AG.: European Patent EP1529092A1. 2007.
[19] Mansfeld G, Rohde U, Henke F, Kaesler H. Odorizing of gas. Symrise AG and Open Grid Europe GmbH.: German Patent DE 000019837066A1. 1998.
[20] Graf F, Kröger K, Reimert R. Sulfur-free odorization with gasodor S-free: A review of the accompanying research and development activities. Energy & fuels. 2007;21(6):3322-3333. doi: 10.1021/ef700406x
[21] Brown S, Vanderveen MH, Arrhenius K, Downey L. Traceable reference gas mixtures for sulfur-free natural gas odorants. Analytical Chemistry. 2014;86(13):6695-6702. doi: 10.1021/ac501525d
[22] Eslamimanesh A. Thermodynamic studies on semi-clathrate hydrates of TBAB + gases containing carbon dioxide. [PhD Dissertation]. [Paris]: MINES Paris Tech.; 2012.
[23] Wagner T. Gas-und Wasserfach. Gas-Erdgas. 2005;146(10):560-563.
[24] Ripley DL, Goetzinger JW, Whisman ML. Human response research evaluation of alternate odorants for LP-gas. Gas Processors Association. 1990;129:1-26.
[25] Quaife R, Szarka J, Moynihan K, Moir M. Test-fluid composition and method for detecting leaks in pipelines and associated facilities. ExxonMobil Upstream Research Co.: US Patent 5049312. 1991.
[26] Szarka J, Moynihan K, Moir M, Quaife R. Test-fluid composition and method for detecting leaks in pipelines and associated facilities. Individual.: CA Patent 2052242. 1993.
[27] Kopasz JP. Fuel cells and odorants for hydrogen. International Journal of Hydrogen Energy. 2007;32(13):2527-2531. doi.org/10.1016/j.ijhydene.2006.11.001
[28] Singh Puri P. Leak site odorization for gas leak detection. Air Products and Chemicals Inc.: US Patent 7229831. 2007.
[29] Dwight Nevers A. Odor-fading prevention from organosulfur-odorized liquefied petroleum gas. Arkema Inc.: CA patent 1274692. 1990.
[30] Altpeter Jr LL. Research recommended to develop odorant-fade model. Pipe Line & Gas Industry. 1997;80(2):39-40.
[31] Sasnanand S. Adsorption of tetrahydrothiophene in Porous media: An experimental approach [PhD dissertation]. [New Mexico]: Institute of Mining and Technology; 1993.
[32] Girod JF, Leclerc JP, Muhr H, Paternotte G, Corriou JP. Removing a small quantity of THT from gas storage groundwater through air stripping and gas-phase carbon adsorption. Environ. Progr. 1996;15(4):277-282. doi.org/10.1002/ep.670150418
[33] Huang F, Lee R. Degradation of ethyl mercaptan in the presence of zero-valence iron. In: Proceedings Volume 4th US DOE. US: Tulsa Univ.; 1997.
[34] Jullian S, Thomas M, Rojey A. Process of global treatment of natural gas on a storage site. IFP Energies Nouvelles IFPEN: EP patent 0781832. 1997.
[35] Masjedi A, Askarizadeh E, Baniyaghoob S. Magnetic nanoparticles surface-modified with tridentate ligands for removal of heavy metal ions from water. Materials chemistry and physics. 2020;249:122917. doi: org/10.1016/j.matchemphys.2020.122917
[36] Panneman HJ, Pot-Gerritsen RC, Kuiper-Van Loo EM, Pastoor H, Janssen-Van Rosmalen R. UV-oxidation process for water treatment at gas plant sites. 20th Int. Gas Union World Gas Conf.; 1997. Copenhagen, Denmark.
[37] Motahari K, Abdollahi-Moghaddam M, Rashidi A. Mechanism study and determination kinetic of catalytic oxidation of mercaptans in Merox process. South African Journal of Chemical Engineering. 2020;33:116-124. doi: org/10.1016/j.sajce.2020.06.003
[38] Yehua H, Yanfen Zh, Chunming X, Chang Samuel H. Molecular characterization of sulfur-containing compounds in petroleum. Fuel. 2018;221:144-158. doi: org/10.1016/j.fuel.2018.02.110
[39] Rahbar Shamskar K, Rashidi A, Aberoomandazar P, Yousefi M, Baniyaghoob S. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption. Environmental Science and Pollution Research. 2019;26(4):3643-3650. doi: org/10.1007/s11356-018-3799-8
[40] Saffarian-DA, Vahid A, Baniyaghoob S, Saber-Tehrani M, Malek Mohammdi R. Deep denitrogenation of model diesel fuel using Ni-doped mesoporous carbon. ChemistrySelect. 2021;6:1073-1081. doi: org/10.1002/slct.202004522
[41] Motahari A, Hu N, Vahid A, Omrani A, Rostami A, W.Schaefer D. Multilevel morphology of complex nanoporous materials. Langmuir. 2018;34(23):6719-6726. doi: org/10.1021/acs.langmuir.8b00970
[42] Samadi-Maybodi A, Vahid A. (2-Hydroxyethyl)-trimethylammonium hydroxide as an organic base for the synthesis of highly ordered MCM-41. Solid State Sciences. 2011;13:271-275. doi: org/10.1016/j.solidstatesciences.2010.11.027
[43] Teymouri M, Samadi-Maybodi A, Vahid A. A rapid method for the synthesis of highly ordered MCM-41. Int. Nano Lett. 2011;1(1):34-37.
[44] Samadi-Maybodi A, Teymouri M, Vahid A, Miranbeigi A. In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil. Journal of Hazardous Materials. 2011;192:1667-1674. doi: org/10.1016/j.jhazmat.2011.06.089
[45] Jafari M, Yousefi M, Baniyaghoob S. Green synthesis and characterization of AgCl nanoparticle using onopordum acanthium extract. International Journal of Biolife Sciences. 202;1(3):154-158. doi: 10.22034/JBS.2022.162485
[46] Peng X, Kumar Jain S, Kumar Singh J, Liu A, Jin Q. Formation patterns of water clusters in CMK-3 and CMK-5 mesoporous carbons: A computational recognition study. Phys. Chem. Chem. Phys. 2018;20:17093-17104. doi: org/10.1039/C8CP01887A
[47] Vahid A, Qandalee M, Baniyaghoob S. H2S removal using ZnO/SBA-3: New synthesis route and optimization of process parameters. Scientia Iranica. 2017;24(6):3064-3073. doi: 10.24200/SCI.2017.4573
[48] Samadi-Maybodi A, Vahid A. Synthesis of mesoporous silica nanoparticles by means of a hydrogel. International Nano Letters. 2013;3:1-3. doi: org/10.1186/2228-5326-3-39
[49] Sarrafi Y, Mehrasbi E, Vahid A, Tajbakhsh M. Well-Ordered mesoporous silica nanoparticles as a recoverable catalyst for one-pot multicomponent synthesis of 4H-Chromene derivatives. Chinese Journal of Catalysis. 2012;33:1486-1494. doi: org/10.1016/S1872-2067(11)60423-3
[50] Rahbar-shamskar K, Rashidi A, Baniyaghoob S, Khodabakhshi S. In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents. Journal of Analytical and Applied Pyrolysis. 2022;164:105520. doi: org/10.1016/j.jaap.2022.105520
[51] Moosa-Zadeh S, Shariati Sh, Yousefi M, Baniyaghoob S, Kefayati H. Using of steel slag and waste rusted iron shavings for biosynthesis of nano zero-valent iron nanoparticles with magnetite coating. Journal of Applied Research in Chemistry. 2022;15(4):52-61. [Persian]. doi: 10.30495/jacr.2022.688109
[52] Mehrasbi E, Sarrafi Y, Vahid A, Alinezhad H. Sulfonic acid-functionalized mesoporous silica nanoparticles (SAMSNs): A recoverable heterogeneous acid catalyst for green synthesis of dicoumarols. Research on Chemical Intermediates. 2014;41:4929-4941. doi: org/10.1007/s11164-014-1578-9
[53] Samadi-Maybodi A, Vahid A. High yield synthesis and characterization of well-ordered Mesoporous silica nanoparticles using sodium carboxy methyl cellulose. Journal of Non-Crystalline Solids. 2011;357:1827-1830. doi: org/10.1016/j.jnoncrysol.2011.01.037
[54] Zolfaghari M, Abromandazar P, Vahid A, Baniyaghoob S. Synthesis and characterization of bimodal mesoporous silica nanoparticles for the removal of sulfur from model fuel. Iranian Physical Chemistry Conference; 2016. Kish, Iran.
[55] Rahbar-Shamskar K, Aberoomand Azar P, Rashidi A, Baniyaghoob S, Yousefi M. Synthesis of micro/mesoporous carbon adsorbents by in-situ fast pyrolysis of reed for recovering gasoline vapor. Journal of Cleaner Production. 2020;259:120832. doi: org/10.1016/j.jclepro.2020.120832
[56] Samadi-Maybodi A, Vahid A, Baniyaghoob S. Study of the BZ oscillating system in the presence of silica nanoparticles containing NiO using a new approach. Scientia Iranica. 2016;23(6):2735-2741. doi: org/10.1016/j.jclepro.2020.120832
[57] Samadi-Maybodi A, Vahid A. High yield synthesis and characterization of well-ordered Mesoporous silica nanoparticles using Sodium Carboxy Methyl Cellulose. Journal of Non-crystalline Solids. 2011;357(7):1827-1830. doi: org/10.1016/j.jnoncrysol.2011.01.037
[58] Hazrati N, Abdouss M, Vahid A, Miranbeigi A, Mohammadalizadeh A. Removal of H2S from crude oil via stripping followed by adsorption using ZnO/MCM-41 and optimization of parameters. International Journal of Environmental Science and Technology. 2014;11(4):997-1006. doi: org/10.1007/s13762-013-0465-z
[59] IARC Working Group. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 71 (Re-Evaluation of Some Organic Chemicals Hydrazine and Hydrogen Peroxide). France: IARC (International Agency for Research on Cancer) Publication; 1999.
[60] Ohara T, Sato T, Shimizu M, et al. ULMANN’S encyclopedia of industrial chemistry. Germany: Wiley-VCH Verlag GmbH & Co.; 2020.
[61] Bernhart M, Driesen E, Kaesler H, Mansfeld G. Sulfur free odorant for natural gas. In: Dolenc DA, editor. Proceedings of International Gas Research Conference. USA: Gas Research Institute; 1998.
[62] Wise P, Rowe S, Dalton P. Odorization of natural gas: What are the Challenges. BioRxiv. 2021;12:2021-2027. doi: org/10.1101/2021.07.10.450231
[63] Devos M, Patte F, Rouault J, Laffort P, Gemert LJ. Standardized human olfactory thresholds. UK: IRL Press at Oxford University Press; 1990.
[64] Whisman ML, Goetzinger JW, Cotton FO, Brinkman DW. Odorant evaluation: A study of ethanethiol and tetrahydrothiophene as warning agents in propane. Environmental Science and Technology. 1978;12(12):1285-1288. doi: org/10.1021/es60147a003
[65] Wilby FV. An objective method for determining an adequate level of odorization in natural gas. US: Institute of Gas Technology; 1990.
[66] Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, et al. The perception of odor objects in everyday life: A review on the processing of odor mixtures. Front Psychol. 2014;5:504-510. doi: org/10.3389/fpsyg.2014.00504