Evaluated Nano Fertilizer on Wheat Crops Under Salinity Stress
Subject Areas : Plant PhysiologyRaghad Sabbar Abbas 1 , Leila Zarandi-Miandoab 2 , Ayyad W. Al-Shahwany 3 , Nader Chaparzadeh 4
1 - Department of Biology, Azarbaijan Shahid Madani University (ASMU), IRAN
2 - Department of Biology, Azarbaijan Shahid Madani University (ASMU), IRAN
3 - Department of biology, College of Science, University of Baghdad, IRAQ
4 - Department of Biology, Azarbaijan Shahid Madani University (ASMU), IRAN
Keywords: Nano-fertilizer, wheat, salt stress,
Abstract :
Wheat is a staple food and is consumed by more than 36% of the world's population as a protein and carbohydrate source globally. Nano-fertilizers represent a breakthrough in agricultural technology, offering promising opportunities to enhance crop productivity and mitigate negative environmental impacts. Utilizing nanoparticles to deliver essential nutrients to plants can improve nutrient use efficiency, as they can provide a more targeted and controlled release of nutrients compared to conventional fertilizers. Wheat, as one of the world's most important staple crops, plays a vital role in global food security. However, wheat cultivation often faces various challenges, one of which is salt stress. Salinity is a major environmental stress factor affecting the growth, development, and productivity of crops worldwide, including wheat. It impacts the physiology and biochemistry of plants, leading to nutrient imbalances, osmotic stress, and ion toxicity, which collectively reduce crop yield. Over the last decade, researchers have started to investigate the potential of nano-fertilizers in enhancing the resilience of wheat and other crops under salt stress conditions. Studies have demonstrated that certain nano-fertilizers can improve plant tolerance to salinity stress by enhancing nutrient availability, promoting water retention, and modulating the plant's physiological responses to stress. This review summarizes the information that is currently available on the usage of NFs worldwide, showing their promise for sustaining crop output in an environmentally benign way. It also highlights the encouraging results of using nano-fertilizers' impact on wheat under salt stress and the optimal strategies for their application.
Abbas, G., M. Saqib, Q. Rafique, A. Rahman, J. Akhtar, M. Haq and M. Nasim. 2013. Effect of salinity on grain yield and grain quality of wheat (Triticum aestivum L.). Pak J Bot, 50, 185-189.
Abdel-Aziz, H. M. and M. Rizwan. 2019. Chemically synthesized silver nanoparticles induced physio-chemical and chloroplast ultrastructural changes in broad bean seedlings. Chemosphere, 235, 1066-1072.
Abdelgadir, E., M. Oka and H. Fujiyama. 2005. Characteristics of nitrate uptake by plants under salinity. Journal of Plant Nutrition, 28, (1) 33-46.
Abou-Zeid, H. and G. Ismail. 2018. The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L to salt stress. Egyptian Journal of Botany, 58, (1) 73-85.
Abou Seeda, M., A. Abou El-Nour, M. El-Bassiouny, M. Abdallah and A. El-Monem. 2024. Middle East Journal of Agriculture Research Volume: 13| Issue: 02| April–June| 2024. Middle East J, 13, (2) 315-434.
Adetuyi, B. O., P. A. Olajide, O. S. Omowumi and C. O. Adetunji. 2024. Application of Plant-Based Nanobiopesticides as Disinfectant. Handbook of Agricultural Biotechnology, Volume 1: Nanopesticides, 63.
Al-Shamma, U. H. and A. W. Al-Shahwany. 2014. Effect of mineral and bio-fertilizer application on growth and yield of wheat Triticum aestivum L. Iraqi Journal of Science, 55, (4A) 1484-1495.
Ali, A., S. Basra, R. Ahmad and A. Wahid. 2009. Optimizing silicon application to improve salinity tolerance in wheat. Soil Environ, 28, (2) 136-144.
Almeida, D. M., M. M. Oliveira and N. J. Saibo. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and molecular biology, 40, (1 suppl 1) 326-345.
Almutairi, Z. M. 2016. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol, 18, (2) 449-457.
Anjum, M., S. N. Pradhan and S. Narayana Pradhan. 2018. Application of nanotechnology in precision farming: a review. Ijcs, 6, (5) 755-760.
Arif, Y., P. Singh, H. Siddiqui, A. Bajguz and S. Hayat. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77.
Arshad, A., H. Qamar, R. Siti-Sundari, Y. Zhang, M. Zubair, M. A. Raza, M. Habib-Ur-Rehman and L. Zhang. 2020. Phenotypic plasticity of spineless safflower (Carthamus tinctorius L.) cultivars in response to exogenous application of salicylic acid under rainfed climate conditions. Pakistan Journal of Agricultural Research, 33, (4) 729.
Arzani, A. and M. Ashraf. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35, (3) 146-189.
Aziz, Y., G. A. Shah and M. I. Rashid. 2019. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere, 216, 564-575.
Azura, M. N., I. Zamri, M. Rashid, G. M. Shahrin, A. Rafidah, I. Rejab, A. Azima, M. Suria and W. Amyita. 2017. Evaluation of nanoparticles for promoting seed germination and growth rate in MR263 and MR269 paddy seeds. J Trop Agric Food Sc, 45, 13-24.
Banik, N. and S. Bhattacharjee. 2020. Complementation of ROS scavenging secondary metabolites with enzymatic antioxidant defense system augments redox-regulation property under salinity stress in rice. Physiology and Molecular Biology of Plants, 26, (8) 1623-1633.
Bharti, A., U. Jain and N. Chauhan. 2024. From Lab to Field: Nano-Biosensors for Real-time Plant Nutrient Tracking. Plant Nano Biology, 100079.
Borggaard, O. 1984. Influence of iron oxides on the non‐specific anion (chloride) adsorption by soil. Journal of soil science, 35, (1) 71-78.
Castro-González, C. G., L. Sánchez-Segura, F. C. Gómez-Merino and J. J. Bello-Bello. 2019. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: Transport and accumulation. Scientific reports, 9, (1) 10372.
Chouhan, N. 2018. Silver nanoparticles: Synthesis, characterization and applications. IntechOpen London, UK:
Dadshani, S., R. C. Sharma, M. Baum, F. C. Ogbonnaya, J. Leon and A. Ballvora. 2019. Multi-dimensional evaluation of response to salt stress in wheat. PloS one, 14, (9) e0222659.
Debnath, N. and S. Das. 2020. Nanobiosensor: current trends and applications. NanoBioMedicine, 389-409.
Demidchik, V., T. A. Cuin, D. Svistunenko, S. J. Smith, A. J. Miller, S. Shabala, A. Sokolik and V. Yurin. 2010. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of cell science, 123, (9) 1468-1479.
Deshmukh, S. K., M. Kochar, P. Kaur and P. P. Singh. 2023. Nanotechnology in agriculture and environmental science. CRC Press, Taylor & Francis Group
Dimkpa, C. O. and P. S. Bindraban. 2017. Nanofertilizers: new products for the industry? Journal of agricultural and food chemistry, 66, (26) 6462-6473.
Dutta, D. and A. Bera. 2021. Nano fertilizer on sustainable agriculture-A review. International Journal of Environment and Climate Change, 11, (8) 1-5.
Ehtaiwesh, F. and H. Rashed. 2020. Growth and yield responses of libyan hard wheat (Triticum durum Desf) genotypes to salinity stress. Zawia Univ Bull, 22, 33-58.
El-Hendawy, S., A. Elshafei, N. Al-Suhaibani, M. Alotabi, W. Hassan, Y. H. Dewir and K. Abdella. 2019. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. Journal of Plant Interactions, 14, (1) 151-163.
El Sabagh, A., M. S. Islam, M. Skalicky, M. Ali Raza, K. Singh, M. Anwar Hossain, A. Hossain, W. Mahboob, M. A. Iqbal and D. Ratnasekera. 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy, 3, 661932.
Eroğlu, Ç., C. Cabral, S. Ravnskov, H. Bak Topbjerg and B. Wollenweber. 2020. Arbuscular mycorrhiza influences carbon‐use efficiency and grain yield of wheat grown under pre‐and post‐anthesis salinity stress. Plant Biology, 22, (5) 863-871.
Farooq, S. and F. Azam. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of plant physiology, 163, (6) 629-637.
Francini, A. and L. Sebastiani. 2019. Abiotic stress effects on performance of horticultural crops. p. 67: MDPI
Frank, A., A. Bauer and A. Black. 1987. Effects of air temperature and water stress on apex development in spring wheat 1. Crop Science, 27, (1) 113-116.
Gardner, W. 2016. Sodium, calcium and magnesium ratios in soils of NW Victoria, Australia may restrict root growth and crop production. Journal of Plant Nutrition, 39, (9) 1205-1215.
Geilfus, C.-M. 2018a. Chloride: from nutrient to toxicant. Plant and Cell Physiology, 59, (5) 877-886.
Geilfus, C.-M. 2018b. Review on the significance of chlorine for crop yield and quality. Plant Science, 270, 114-122.
Gianella, M. 2021. Molecular and physiological hallmarks of seed longevity in crops and crop wild relatives.
Glauber, J. W. 2023. Assessing tight global wheat stocks and their role in price volatility.
Grieve, C., L. Francois and E. Maas. 1994. Salinity affects the timing of phasic development in spring wheat. Crop Science, 34, (6) 1544-1549.
Hasan, A., H. R. Hafiz, N. Siddiqui, M. Khatun, R. Islam and A.-A. Mamun. 2015. Evaluation of wheat genotypes for salt tolerance based on some physiological traits. Journal of Crop Science and Biotechnology, 18, 333-340.
Hasanuzzaman, M., M. B. Bhuyan, T. I. Anee, K. Parvin, K. Nahar, J. A. Mahmud and M. Fujita. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8, (9) 384.
Heikal, Y. M. and H. M. Abdel-Aziz. 2020. Biogenic nanomaterials and their applications in agriculture. Biogenic Nano-Particles and their Use in Agro-ecosystems, 489-514.
Hojjat, S. S. and M. Kamyab. 2017. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russian agricultural sciences, 43, 61-65.
Holmström, K. M. and T. Finkel. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature reviews Molecular cell biology, 15, (6) 411-421.
Hossain, M. S. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci, 1, (1) 1-3.
Hu, Y. and U. Schmidhalter. 1998. Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta, 204, 212-219.
Husen, A. and K. S. Siddiqi. 2014. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale research letters, 9, 1-24.
Hütsch, B. W., W. He and S. Schubert. 2016. Nitrogen nutritional status of young maize plants (Zea mays) is not limited by NaCl stress. Journal of Plant Nutrition and Soil Science, 179, (6) 775-783.
Ismail, A. M. and T. Horie. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual review of plant biology, 68, (1) 405-434.
Janicka-Russak, M. and K. Kabała. 2014. The role of plasma membrane H+-ATPase in salinity stress of plants. In Progress in Botany: Vol. 76:77-92: Springer. Number of 77-92 pp.
Jawad, M. M., A. W. Al-Shahwany and S. H. Khudhair. 2015. Effect of Bio-chemical Fertilizer on Proline Accumulation, Catalase and Peroxidase Enzymes Activity in Leaves of Two Wheat Cultivars (Ipa99 and Rabyaa) Under Water Deficit Stress. Iraqi Journal of Science, 1350-1358.
Kalhoro, N. A., I. Rajpar, S. A. Kalhoro, A. Ali, S. Raza, M. Ahmed, F. A. Kalhoro, M. Ramzan and F. Wahid. 2016. Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, (15) 2257.
Kataria, S. and S. K. Verma. 2018. Salinity stress responses and adaptive mechanisms in major glycophytic crops: the story so far. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms, 1-39.
Khalil, R., N. Elsayed and H. A. Hashem. 2022. Nanoparticles as a new promising tool to increase plant immunity against abiotic stress. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance:61-91: Springer. Number of 61-91 pp.
Kim, D. Y., A. Kadam, S. Shinde, R. G. Saratale, J. Patra and G. Ghodake. 2018. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture, 98, (3) 849-864.
Kumar, Y., K. Tiwari, T. Singh and R. Raliya. 2021. Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research, 23, (3) 238-255.
Kumari, A. and R. Kaur. 2020. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regulation, 91, (3) 327-347.
Kundu, P., R. Gill, S. Ahlawat, N. A. Anjum, K. K. Sharma, A. A. Ansari, M. Hasanuzzaman, A. Ramakrishna, N. Chauhan and N. Tuteja. 2018. Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants:151-220: Elsevier. Number of 151-220 pp.
Lassaletta, L., G. Billen, B. Grizzetti and J. Anglade. 2020. and Josette Garnier. Just Enough Nitrogen: Perspectives on how to get there for regions with too much and too little nitrogen, 29.
Maas, E. and C. Grieve. 1990. Spike and leaf development of sal‐stressed wheat. Crop Science, 30, (6) 1309-1313.
Massa, D., N. S. Mattson and H. J. Lieth. 2009. Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: a Michaelis–Menten modelling approach. Plant and soil, 318, 101-115.
Mathur, S., S. Pareek and D. Shrivastava. 2022. Nanofertilizers for development of sustainable agriculture. Communications in Soil Science and Plant Analysis, 53, (16) 1999-2016.
Mohamed, A. K. S., M. F. Qayyum, A. M. Abdel-Hadi, R. A. Rehman, S. Ali and M. Rizwan. 2017. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63, (12) 1736-1747.
Muchate, N. S., G. C. Nikalje, N. S. Rajurkar, P. Suprasanna and T. D. Nikam. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82, 371-406.
Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59, (1) 651-681.
Nadeem, M., M. N. Tariq, M. Amjad, M. Sajjad, M. Akram, M. Imran, M. A. Shariati, T. Gondal, N. Kenijz and D. Kulikov. 2020. Salinity-induced changes in the nutritional quality of bread wheat (Triticum aestivum L.) genotypes.
Nair, R., S. Varghese and B. Nair. 2010. Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material deliver to plants Pl Sci, 179, 154-163.
Nishida, K., N. M. Khan and S. Shiozawa. 2009. Effects of salt accumulation on the leaf water potential and transpiration rate of pot-grown wheat with a controlled saline groundwater table. Soil Science and Plant Nutrition, 55, (3) 375-384.
Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49, (1) 249-279.
Otlewska, A., M. Migliore, K. Dybka-Stępień, A. Manfredini, K. Struszczyk-Świta, R. Napoli, A. Białkowska, L. Canfora and F. Pinzari. 2020. When salt meddles between plant, soil, and microorganisms. Frontiers in plant science, 11, 553087.
Pannwitz, A., D. M. Klein, S. Rodríguez-Jiménez, C. Casadevall, H. Song, E. Reisner, L. Hammarström and S. Bonnet. 2021. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chemical Society Reviews, 50, (8) 4833-4855.
Park, S.-H., J. D. Wilson and B. W. Seabourn. 2009. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. Journal of Cereal Science, 49, (1) 98-105.
Pote, T. D., A. Kaachra, K. Thakur, R. K. Salgotra, S. G. Krishnan and R. Rathour. 2022. Genetic improvement of traditional Basmati rice Ranbir Basmati for semi-dwarfism and blast resistance through molecular breeding. Plant Gene, 32, 100386.
Pramanik, P., P. Krishnan, A. Maity, N. Mridha, A. Mukherjee and V. Rai. 2020. Application of nanotechnology in agriculture. Environmental Nanotechnology Volume 4, 317-348.
Rajabi Dehnavi, A., M. Zahedi, A. Ludwiczak, S. Cardenas Perez and A. Piernik. 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10, (6) 859.
Romano-Armada, N., M. F. Yañez-Yazlle, V. P. Irazusta, V. B. Rajal and N. B. Moraga. 2020. Potential of bioremediation and PGP traits in Streptomyces as strategies for bio-reclamation of salt-affected soils for agriculture. Pathogens, 9, (2) 117.
Roy, S. and A. Hossain. 2024. The Nanotechnology Driven Agriculture: The Future Ahead. CRC Press
Saad, D. A., A. W. Al-Shahwany and H. M. Aboud. 2019. Evaluation the Effect of Bio-Fertilization on Some Wheat (Triticum aestivum) Growth Parameters under Drought Conditions. Iraqi Journal of Science, 1948-1956.
Sairam, R. K., K. V. Rao and G. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163, (5) 1037-1046.
Shahid, M., B. Pourrut, C. Dumat, M. Nadeem, M. Aslam and E. Pinelli. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology Volume 232, 1-44.
Sharma, B., U. Lakra, R. Sharma and S. R. Sharma. 2022. A comprehensive review on nanopesticides and nanofertilizers—A boon for agriculture. Nano-enabled Agrochemicals in Agriculture, 273-290.
Sorour, S., M. Aiad, A. Ahmed, M. Henash, E. Metwaly, H. Alharby, A. Bamagoos, A. Hossain, C. Barutcular and H. Saneoka. 2019. Yield of wheat is increased through improving the chemical properties, nutrient availability and water productivity of salt affected soils in the North Delta of Egypt. Applied Ecology & Environmental Research, 17, (4)
Subramanian, K. S., A. Manikandan, M. Thirunavukkarasu and C. S. Rahale. 2015. Nano-fertilizers for balanced crop nutrition. Nanotechnologies in food and agriculture, 69-80.
Tanveer, M. and H. a. I. Ahmed. 2020. ROS signalling in modulating salinity stress tolerance in plants. Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, 299-314.
Taran, N., V. Storozhenko, N. Svietlova, L. Batsmanova, V. Shvartau and M. Kovalenko. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale research letters, 12, 1-6.
Tareq, M., M. Hossain, M. Mojakkir, R. Ahmed and M. Fakir. 2011. Effect of salinity on reproductive growth of wheat. Bangladesh J Seed Sci & Tech, 15, (1&2) 111-116.
Thomas, G. W. and A. Swoboda. 1970. Anion exclusion effects on chloride movement in soils. Soil Science, 110, (3) 163-166.
Thor, K. 2019. Calcium—nutrient and messenger. Frontiers in plant science, 10, 440.
Usman, M., M. Farooq, A. Wakeel, A. Nawaz, S. A. Cheema, H. Ur Rehman, I. Ashraf and M. Sanaullah. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the total environment, 721, 137778.
Wakeel, A., M. Farooq, M. Qadir and S. Schubert. 2011. Potassium substitution by sodium in plants. Critical reviews in plant sciences, 30, (4) 401-413.
Wang, C., D. Luo, X. Zhang, R. Huang, Y. Cao, G. Liu, Y. Zhang and H. Wang. 2022. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167.
Wang, P., E. Lombi, F.-J. Zhao and P. M. Kopittke. 2016. Nanotechnology: a new opportunity in plant sciences. Trends in plant science, 21, (8) 699-712.
Yadav, A., K. Yadav and K. A. Abd-Elsalam. 2023a. Exploring the potential of nanofertilizers for a sustainable agriculture. Plant Nano Biology, 100044.
Yadav, A., K. Yadav and K. A. Abd-Elsalam. 2023b. Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals, 2, (2) 296-336.
Yousaf, H., A. Mehmood, K. S. Ahmad and M. Raffi. 2020. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.
Zaeem, A., S. Drouet, S. Anjum, R. Khurshid, M. Younas, J. P. Blondeau, D. Tungmunnithum, N. Giglioli-Guivarc’h, C. Hano and B. H. Abbasi. 2020. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: A comparative analysis. Biomolecules, 10, (6) 918.
Zheng, Y., X. Xu, Z. Li, X. Yang, C. Zhang, F. Li and G. Jiang. 2009. Differential responses of grain yield and quality to salinity between contrasting winter wheat cultivars. Seed Sci Biotechnol, 3, (2) 40-43.
Zulfiqar, F., M. Navarro, M. Ashraf, N. A. Akram and S. Munné-Bosch. 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant science, 289, 110270.