Evaluation of Gibberellin Synthesis Genes (GA3OX) expression and Antioxidant Capacity in Common Bean (Phaseolus vulgaris L. cv. Sadri) Seeds induced by Chitosan under Salinity
Subject Areas : Plant PhysiologyHaniyeh Saadat 1 , Mohammad Sedghi 2 , raouf Seyed Sharifi 3 , salim farzaneh 4
1 - University of Mohaghegh Ardabili
2 - University of Mohaghegh Ardabili
3 - University of Mohaghegh Ardabili
4 - University of Mohaghegh Ardebil, Ardebil, Iran
Keywords: germination, Hormone, salt, priming, qRT-PCR,
Abstract :
A factorial experiment was conducted based on a completely randomized design with four replications. Treatments included four salinity levels (0, 50, 100 and 150 mM) and four chitosan levels (0, 0.25, 0.50 and 0.75% by weight-volume all of which were dissolved in 1% acetic acid). After RNA extraction and cDNA synthesis, the expression of gibberellin synthesis genes (GA3OX1, GA3OX2, GA3OX3, GA3OX4, GA3OX5 and GA3OX6) was assessed using qRT-PCR, and also some biochemical indicators were measured. The results showed that salinity stress increased the activity of peroxidase and malondialdehyde (MDA) content. Seed pretreatment with chitosan at a concentration of 0.75% increased peroxidase activity and decreased MDA content. Phosphate content in seed pretreatment with 0.75% chitosan and 0 mM salinity levels increased by 57% compared to the control. With increasing salinity, the activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased, while catalase activity decreased. The activity of superoxide dismutase in pretreatment with 0.25% chitosan, ascorbate peroxidase and glutathione reductase in pretreatment with 0.75% Chitosan increased at 150 mM salinity stress by 14%, 46% and 34%, respectively. Also, the activity of catalase enzyme in pretreatment with 0.75% chitosan and the level of 0 mM salinity stress increased by 39% compared to the control. GA3OX1 gene expression in priming treatment with 0.75% chitosan at 0 mM salinity level was higher than GA3OX2, GA3OX3, GA3OX4, GA3OX5 and GA3OX6.
Abdalla, M. M. 2011. Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America, 2: 207-220.
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-6.
Ali, E. F., A. M. El-Shehawi, O. H. M. Ibrahim, Y. Abdul-Hafeez, M. M. Moussa, and F. A. S. Hassan. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161: 166–175.
Amiri, A., S. Esmaeilzadeh Bahabadi, P. Yadollahi Dehcheshmeh, and A. Sirousmehr. 2017. The Role of salicylic acid and chitosan foliar applications under drought stress condition on some physiological traits and oil yield of Safflower (Carthamus tinctorius L.). Food Chemistry, 11: 69-84.
Arora, A., R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and anti-oxidative system in plants. Current Science, 82(1): 1227-1238.
Asada, K. 2000. The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society B, 355:1419-1431.
Ashraf, M., and Mcneilly T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2): 157-174.
Azizi, F., H. Amiri, and A. Ismaili. 2019. Effect of melatonin on some morphophysiological characteristics of Phaseolus vulgaris cv. Sadri under salinity stress. Journal of Plant Research, 3(2): 636-648.
Boonlertnirun, S., S. Meechouib, and E. Sarobol. 2010. Physiological and morphological responses of field corn seedlings to chitosan under hypoxic conditions. Science Asia, 36(2): 89-93.
Borzouei, A., M. Kafi, E. Akbari-Ghogdi, and M. A. Mousavi-Shalmani. 2012. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of salt sensitive and salt-tolerant wheat cultivars. Chilean Journal of Agricultural Research, 72: 476- 482.
Bose, B., M. Kumar, R. K. Singhal, and S. Mondal. 2018. Impact of Seed Priming on the Modulation of Physico-chemical and Molecular Processes During Germination, Growth, and Development of Crops. Advanced seed priming, pp: 23-40.
Bradford, K. J., and T. C. Hsiao. 1982. Physiological response to moderate water stress. Plant Physiological Ecology, pp: 263-324.
Chamnanmanoontham, N., W. Pongprayoon, R. Pichayangkura, S. Roytrakul, and N. S. Chadchawa. 2015. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Journal of Plant Growth Regulation, 75: 101–114.
Demirevska, K., D. Zasheva, R. Dimitrov, L. Simova-Stoilova, M. Stamenova, and U. Feller. 2009. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiologiae Plantarum, 31: 1129–1138.
Doraki, G. H. R., G. H. R. Zamani, and M. H. Sayyari. 2016. Effect of salt stress on physiological traits and antioxidant enzymes activity of chickpea (Cicer arietinum L. cv. Azad). Iranian Journal of Field Crops Research, 14(3): 470-483.
Doraki, G. H. R., G. H. R. Zamani, and M. H. Sayyari. 2018. Effect of salt stress on yield components and concentrations of sodium and potassium in chickpea (Cicer arietinum L. cv. Azad). Iranian Journal Pulses Research, 9(1): 57-68.
Dzung, N. A., V. T. Phuong Khanh, and T. T. Dzung. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84(1): 751–755.
Esfandiari, E. A., M. R. Shakiba, S. A. Mahboob, H. Alyari, and S. Shahabivand. 2008. The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling. Pakistan Journal of Biological Sciences, 11:1916-1922.
Esmaeilzadeh Bahabadi, S., M. Sharifi, and M. Behmanesh. 2013. Increased the genes expression of phenylpropanoid biosynthesis pathway and production of podophyllotoxin by chitosan in cell cultures of Linum album. Modares Journal of Biotechnology, 4: 57-64.
Esterbauer, H., and D, Grill. 1978. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiology, 61: 119–121.
Fidalgo, F., A. Santos, I. Santos, and R. Salema. 2004. Effects of long term salt stress on antioxidant defense systems, leaf water relations and chloroplast ultrastructure of potato plants. Annals of Applied Biology, 145(2): 185-192.
Ghamari, H., and G. Ahmadvand. 2015. Effect of weed competition on seed’s protein, seed’s electrical conductivity and leaf’s relative chlorophyll content of dry bean. Applied Field Crops Research, 28(107): 67-73.
Ghanbari, M., A. Mokhtassi-Bidgoli, P. Talebi-Siah Saran, and H. Pirani. 2019. Effect of deterioration on germination and enzymes activity in dry bean (Phaseolus vulgaris L.), under salinity stress condition. Environmental Stresses in Crop Sciences, 12(2): 585-594.
Giannopolitis, C. N., and S. K. Ries. 1997. Suoeroxide dismutase: I. Occurrence in higher plants. Plant Physiology, 59(2): 309-14.
Golkar, P., M. Taghizadeh, and Z. Yousefian. 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture, 137:575–585.
Gu, T., H. He, Y. Zhang, Z. Han, G. Hou, T. Zeng, Q. Liu, and Q. Wu. 2012. Trmt112 gene expression in mouse embryonic development. Acta Histochem. Cytochem, 45(2): 113-9.
Guan, Y. J., J. Hu, X. J. Wang, C. X. Shao. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University-Science B, 10(6): 427-433.
Hanato, T., H. Kagawa, T. Yasuhara, and T. Okuda. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chemical and Pharmaceutical Bulletin, 36(2): 2090-2097.
Harish Prashanth, K. V., S. M. Dharmesh, K. S. Jagannatha Rao, and R. N. Tharanathan. 2007. Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydrate Research, 342(2): 190-195.
Hidangmayum, A., P. Dwivedi, D. Katiyar, and A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2): 303-326.
Hu, L., P. Wang, Z. Hao, Y. Lu, G. Xue, Z. Cao, H. Qu, T. Cheng, J. Shi, and J. Chen. 2021. Gibberellin Oxidase Gene Family in L. chinense: genome-wide identification and gene expression analysis. International Journal of Molecular Sciences, 22(13): 7167-7174.
Jabeen, N., and R. Ahmad. 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7): 1699-705.
Khajehpour, M. R. 2015. Principles and Fundamentals of Crop Production. 3nd ed. Jahad Daneshgahi Isfahan University of Technology. Iran: Isfahan, 398 p.
Kheirizadeh Arough, Y., R. Seyed Sharifi, M. Sedghi, and M. Barmaki. 2016. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1): 116-124.
Latef, A. A. H. A., A. M. Omer, A. A. Badawy, M. S. Osman, and M. M. Ragaey. 2021. Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants, 10(1):110.
Linh, T. M., N. C. Mai, P. T. Hoe, L. Q. Lien, N. K. Ban, L. T. T. Hien, N. H. Chau, and N. T. Van. 2020. Metal-based nanoparticles enhance drought tolerance in soybean. Journal of Nanomaterials, 6: 1-13.
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 25(4): 402-408.
Macadam, J. W., R. Nelson, and E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99(3): 879-85.
Macdonald, M. B. 1999. Seed deterioration: physiology, repaired and assessment. Seed Science and Technology, 27: 177-237.
Mahdavi, B., and A. Rahimi. 2013. Seed priming with chitosan improves the germination and growth performance of Ajwan (Carum copticum) under salt stress. Eurasian Journal of Biosciences, 7: 69-76.
Mahdavian Fard, A., M. Dahajipour, K. H. Malekzadeh, and S. R. Sahafi. 2021. The effect of chitosan on phenolic compounds, rosmarinic acid and expression of key genes involved in rosmarinic acid biosynthesis in cell suspension culture of Melissa officinalis L. Cell and Tissue Research, 11(4): 261-243.
Mahmoodi Jaraghili, P., H. Mohajjel Shoja, and E. Mohajjel Kazemi. 2016. Evaluation of the effect of salinity on the germination and expression of antioxidant genes in two cultivars of tomato plant. Genetic Engineering and Biosafety Journal, 5(1): 51-59.
Malecka, A., A. Piechalak, A. Mensinger, D. Hanc, D. Baralkiewicz, and B. Tomaszewska. 2012. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Polish Journal of Environmental Studies, 21(6): 1721-30.
Malerba, M., and R. Cerana. 2016. Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7): 996.
Maroufi, K., H. A. Farahani, and O. Moradi. 2011. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Advances in Environmental Biology, 5(11): 3659-3663.
Mccue, P., and K. Shetty. 2002. A biochemical analysis of mung bean (Vigna radiata) response to microbial polysaccharides and potential phenolic enhancing effects for nutraceutical applications. Food Biotechnology, 16:57–79.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9): 405-10.
Mola, T., and K. Belachew. 2015. Determination of critical period of weed-common bean (Phaseolus vulgaris L.) competition at Kaffa, Southwest Ethiopia. Ghana Journal of Agricultural Science, 5(3): 93-100.
Mondal, M. A., M. A. Malek, A. B. Puteh, M. R. Ismail, M. Ashrafuzzaman, and L. Naher. 2012. Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6(5): 918-921.
Musapour Yahyaabadi, H., M. Asgharipour, and M. Basiri. 2016. Role of chitosan in improving salinity resistance through some morphological and physiological characteristics in fenugreek (Trigonella foenum-graecum L.). Journal of Science and Technology of Greenhouse Culture, 7(1): 165-175.
Nag, S., and S. Kumaria. 2018. In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea. Phytochem, 156: 176-183.
Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxides in Spanish chloroplasts. Plant Cell Physiology, 22: 867–880.
Paparella, S., S. S. Araújo, G. Rossi, M. Wijayasinghe, D. Carbonera, and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34: 1281–1293.
Park, P. J., J. Y. Je, and S. K. Kim. 2004. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydrate Polymers, 55: 17-22.
Parsa, M., and A. Bagheri. 2013. Pulses. Mashhad: Ferdowsi University Press.
Perez, M. B., N. L. Calderom, and A. L. Croci. 2007. Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chemistry, 104(2): 585-592.
Qian, Y., D. X. Tan, R. J. Reiter, and H. Shi. 2015. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin mediated innate immunity against bacterial pathogen in Arabidopsis. Scientific Reports, 28(5): 15815.
Rahneshan, M., F. Taliei, L. Ahangar, and H. Saburi, S. H. Kia. 2020. Effect of chitosan on the expression pattern of some pathogenecity related genes in wheat infected with powdery mildew. Journal of Plant Molecular Breeding, 11(32): 124-132.
Ray, S. R., M. J. H. Bhuiyan, M. Anowar Hossain, S. Mahmud, and M. Tahjib-Ul-Arif. 2016. Chitosan suppresses antioxidant enzyme activities for mitigating salt stress in mung bean varieties. IOSR Journal of Agriculture and Veterinary Science, 9(9): 36-41.
Safikhana, S., K. Khoshbakht, M. R. Chaichi, A. Amini, and B. Motesharezadehd. 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum L. Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10: 49-58.
Sairam, R. K., K. V. Rao, and G. C. Srivastava. 2002. Differential response of wheat genotypesto long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037-1046.
Shim, I. S., Y. Momose, A. Yamamoto, D. W. Kim, and K. Usui. 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Journal of Plant Growth Regulation, 39(3): 285-292.
Sopalun, K., K. Thammasiri, and K. Ishikawa. 2010. Effects of chitosan as the growth stimulator for Grammatophyllum speciosum in vitro culture. International Journal of Biotechnology and Bioengineering, 4(11): 828-830.
Sui, X. Y., W. Q. Zhang, W. Xia, and Q. Wang. 2002. Effect of chitosan as seed coating on seed germination and seedling growth and several physiological and biochemical indexes in rapeseed. Plant Physiology Communications, 38: 225-227.
Sun, T., W. M. Xie, and P. X. Xu. 2004. Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydrate Polymers, 58(4): 379-382.
Taheri, F., M. Dehmardeh, M. Salari, and R. Bagheri. 2017. Evaluate the effect of chitosan on the activities of antioxidant enzymes in Ajwain (Carum copticum L.) under drought stress. Iranian Journal of Horticultural Science, 48(3): 575-584.
Warraich, E. A., S. M. A. Basra, N. Ahmad, R. Ahmed and M. Aftab. 2002. Effect of nitrogen on grain quality and vigour in wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 4(4): 517-520.
Yang Feng, H., J. Li, J. Wu, and X. Q. Yurong. 2009. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Journal of Plant Growth Regulation, 58: 131-136.
Zhao, J., and K. Sakai. 2003. Multiple signaling pathways mediate fungal elicitor-induced β-thujaplicin production in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 54: 647-656.