On the Independence of Jeffreys’ Prior for Truncated-Exponential Skew-Symmetric Models
Subject Areas : International Journal of Industrial Mathematicsسعید میرزاده 1 , انیس ایرانمنش 2 * , احسان ارمز 3
1 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
2 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
3 - Department of Mathematics and Statistics, Mashhad Branch,
Islamic Azad University, Mashhad, Iran.
Keywords: Bayesian estimator, Posterior existence, Truncated exponential skew-logistic distributions, Simulation, Truncated-exponential skew-symmetric distributions, Jeffreys’ prior,
Abstract :
We study the independent Jeffreys' prior of the unknown location, scale and skewness parameters of truncated-exponential skew-symmetric distributions(TESSD). We show that this prior is symmetric and improper but it yields a proper posterior distribution for some densities. A simulation study using Monte Carlo methods is presented to compare the efficiency of Bayesian estimators in TESSD with Azzalinis' skew models under square error loss and Linex loss functions.
[1] A. Azzalini, A class of distributions include the normal ones, Scandinavian Journal of Statistics 12 (1985) 171-178.
[2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica XLVI (1986) 199-208.
[3] A. Azzalini, A. Capitanio, Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (1999) 579-602.
[4] A. Azzalini, A. Capitanio, Distributions generated by perturbation of symmetry with emphasis on a multivariate skew tdistribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65 (2003) 367-389. doi.org/10.1111/1467-9868.00391
[5] A. Azzalini, M. G. Genton, Robust like doi.org/10.1111/j.1751-5823.2007.00016.x
[6] M. D. E. Branco, M. G. Genton, doi:101111/j.1467.9469.2011.00779.x
[7] S. Cabras, W. Racugno, M. E. Castellanos, L. Ventura, A matching prior for the shape parameter of the skew-normal distribution, Scandinavian Journal of Statistics 39 (2012) 236-247, doi.org/10.1111/j.1467-9469.2011.0775.x
[8] A. Canale, E. C. Kenne Pagui, B. Scarpa, Bayesian modeling of university first-year students’ grades after placement test, Journal of Applied Statistics 43 (2016) 3015-3029, doi.org/10.1080/02664763.2016.1157144.
[10] J. T. A. S. Ferreira, M. F. J. Steel, A constructive representation of univariate skewed distributions, Journal of the American Statistical Association 101 (2006) 823-829. doi.org/10.1198/016214505000001212
[11] F. Ghaderinezhad, C. Ley and N. Loperfido, Bayesian Inference for Skew-Symmetric Distributions, Symmetry 12 (2020) 491-505,doi.org/10.3390/sym12040491.
[12] M. Hallin, C. Ley, Skew-symmetric distributions and Fisher information -a tale of two densities, Bernoulli 18 (2012) 747-763, doi.org/10.3150/12-BEJ346.
[13] M. C. Jones, On families of distributions with shape parameters (with discussion), International Statistical Review 83 (2015) 175-192, doi.org/10.1111/insr.12055
[14] C. Ley, Flexible modelling in statistics: past, present and future, Journal de la Socit Franaise de Statistique 156 (2015) 76-96.
[15] C. Ley, D. Paindaveine, On the singularity of multivariate skew-symmetric models, Journal of Multivariate Analysis 101 (2010) 1434-1444, doi.org/10.1016/j.jmva.2009.10.008
[16] B. Liseo, N. Loperfido, Default Bayesian analysis of the skew-normal distribution, Journal of Statistical Planning and Inference 136 (2004) 373-389.
[17] B. Liseo, N. Loperfido, A note on reference priors for the scalar skew-normal distribution, Journal of Statistical Planning and Inference 136 (2006) 373-389. doi.org/10.1016/j.jspi.2004.06.062
[19] S. Nadarajah, The skew-logistic distribution, AStA Advances in Statistical Analysis 93 (2009) 187-203, doi.org/10.1007/s10182-009-0105-6
[21] A. Pewsey, Problems of inference for Azzalini’s skewnormal distribution, Journal of applied statistics 27 (2000) 859-870, doi.org/10.1080/02664760050120542
[22] F. J. Rubio, B. Liseo, On the independence Jeffreys’ prior for skew-symmetric models, Statistics and Probability Letters 85 (2014) 91-97, doi.org/10.1016/j.spl.2013.11.012
[23] J. Wang, J. Boyer, M. G. Genton, A skew-symmetric representation of multivariate distributions, Statistica Sinica 14 (2004) 1259-1270.