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Abstract

We study the Jeffreys’ prior of the skewness parameter of truncated-exponential skew-symmetric
distributions (TESSDs). We show that this prior is symmetric, improper, and with tails O(|]A|71).
While Jeffreys’ prior is improper, as we have shown, it yields a proper posterior distribution for some
densities. We also calculate the independent Jeffreys’ prior for the case of unknown location and scale
parameters and show that the corresponding posterior distribution is proper. A simulation study
using Monte Carlo methods is presented to compare the efficiency of Bayesian estimators in TESSD
with Azzalinis’ skew models by computing the bias and the mean square error under square error
loss and Linex loss functions. The results show the superiority of the Bayesian estimators in TESSD
versus Bayesian estimators in Azzalinis’ skew models.
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1 Introduction

owadays skew distributions are required to
N model asymmetric data. Such data fre-
quently arise in many domains such as biometry,
finance, materials sciences, and environmetrics.
See for instance Ley [14] for detailed explana-
tions. A popular method to produce this kind
of distribution is based on adding a skew pa-
rameter to a symmetric distribution that controls
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skewness. In this line, univariate skew-symmetric
models have been introduced by many authors.
Azzalini [1, 2] proposed an asymmetric density,
as follows

Ty (y) =2fx(y) Fx(\y), AeR.

yEeR, (1.1)

A special case of (1.1) is the class of skew-normal
distributions, which is given by

()0 (55%)

yeR, pelR, >0, NeR,

fr(y) = g@

g

(1.2)

where ¢ and ¢ are the standard normal probabil-
ity density function (PDF) and cumulative dis-
tribution function (CDF), respectively. It is de-
noted by Y ~ SN(u,0,A). Some other special
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cases of (1.1) are skew-t, skew-logistic, and skew-
Cauchy distributions. Wang et al. [23] showed
that this method can be extended to any contin-
uous symmetric density f, with support on R and
mode at 0, through the transformation as follows:

) = 2ax (11 ) e (A1),

yeER pneR, >0, NeR,

(1.3)

where m, named the skewing function, is a func-
tion that satisfies 0 < 7(y) < 1 and 7w(—y) =
1 —m(y). It follows that any symmetric CDF can
be used as a skewing function. Several functions
for f and 7 have been used in the literature; see
Azzalini and Capitanio [4] for the skew Student-t
distribution, Nadarajah [19] for the skew-logistic
distribution and Azzalini [2] for the power expo-
nential distribution.

Subsequently, Ferreira and Steel [10] defined Y as
a new skew version of random variables with the

PDF as follows:

Iy (y) = fx(W)w(Fx(y)),

where w(-) is a PDF on (0, 1) and X is a symmet-
ric random variable about zero with PDF fx ()
and CDF Fx(-). By changing w(-) in (1.4), many
of the known families of skew distributions are
obtained. For example, if w(z) = 2Fx (AFx' (),
then (1.4) changes to (1.1).

Distributions obtained using this method are
called skew-symmetric distributions. For a re-
cent and extensive overview, we refer the reader
to Jones [13].

The Azzalini-type distributions have garnered
much success due to their strong stochastic prop-
erties, elegant generating mechanisms, and good
fitting properties, (Azzalini and Genton [5]). Un-
fortunately, some certain Azzalini-type distribu-
tions suffer from inferential problems. Ley and
Paindaveine [15] and Hallin and Ley [12] deter-
mined that, among others, the skew-normal dis-
tribution has singular Fisher information scores
due to the collinearity of the location and skew-
ness scores. Pewsey [21] proved that the maxi-
mum likelihood estimation for the skewness pa-
rameter in Azzalini skew-normal families does
not always exist. Also, Azzalini [1] showed that
the Fisher information matrix of the parameters
(, 0, \) is singular at A = 0 for the skew-normal
sampling model. Furthermore, in some data sets
the maximum likelihood estimate of the skewness

y € R, (1.4)

S. Mirzadeh et al., /IJIM Vol. 14, No. 1 (2022) 91-103

parameter tends toward infinity. That is notewor-
thy that a half-normal distribution is fitted when
values are observed on both halves of the distri-
bution(Azzalini and Capitanio [3].

Some authors have proposed the use of the
Bayesian approach to avoid to avoid these infer-
ential problems. Although A is named skewness
parameter, this parameter controls the mode,
asymmetry, spread, and tail behavior of the PDF.
Despite this, a lot of priors for A have been pro-
posed in the literature, inter alia by Liseo and
Loperfido [16, 17], Cabras et al. [7], Branco et
al. [6], and Rubio and Liseo [22]. These refer-
ences focus on the construction of noninformative
priors from different viewpoints. For example,
Rubio and Liseo [22] studied the Jeffreys’ prior
of the skewness parameter of a general class of
scalar skew-symmetric models. They also calcu-
lated the independent Jeffreys’ prior for the case
of unknown location and scale parameters and
investigated conditions for the propriety of the
corresponding posterior distribution.

Recently Dette et al. [9] have studied priors based
on distances for skew-symmetric models and in-
terpreted the parameter A as the perturbation pa-
rameter. They proposed a new method for con-
structing priors for A based on its overall effect on
the shape of the density. For this purpose, they
defined a measure of perturbation and based on
that, built informative priors. Canale et al. [8],
have also studied informative priors and proposed
the use of normal and skew-normal priors for A
in the skew-normal model. Another recent review
can be found in Ghaderinezhad et al. [11].
Nadarajah et al. [20] introduced a new fam-
ily of skew distributions as a competitor to the
well-known Azzalini skew distributions, called
truncated-exponential skew-symmetric distribu-
tions (TESSDs). They showed that TESSD is
a member of the exponential family; therefore,
the estimate of the skewness parameter can be
obtained easier.

A random variable Y has the truncated-
exponential skew-symmetric (TESS) distribu-
tion, denoted by Y ~ TESS(u,0,)\), if its PDF
is given by

Prlyssn o) =G eip(—A)] " g? ; u)
u 3

Y, A ER, 0 >0,

X exp | —AFx
(1.5)
where fx(-) and Fx(-) are the PDF and CDF of

a symmetric random variable X about zero, re-
spectively, and A is a shape parameter. If y = 0
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Figure 1: Plots of I(\) and 7(\).

and o = 1, then it is denoted by Y ~ TESS(A).
Also note that (1.5) is a particular case of (1.4)
for w(z) = ﬁ%&i;' Also (1.4) is undefined at
A = 0, so A = 0 should be interpreted as the
limA — 0. If A — to0, then Y ~ TESS(X) re-
duces to degenerate random variables. Note also
that (1.5) is symmetric concerning A in the sense
that f(y;\) = f(—y;—A\). Furthermore, in the
limit, as A — 0, Y ~ TESS(A) has the same dis-
tribution as X.

The content of the rest of this paper is organized
as follows. In Section 2, we study the Jeffreys’
prior of the skewness parameter of T'ES.S models.
We show that this prior is symmetric, improper,
and with tails O(|A|7!). We also calculate the
independence Jeffreys’ prior for the case of un-
known location and scale parameters and show
that the corresponding posterior distribution is
proper. Section 3 provides Bayesian inference for
the truncated exponential skew-logistic distribu-
tion. A simulation study is conducted in Section
4 to compare the performances of the Bayesian
estimators in TESSD with Azzalini’s skew mod-
els. Finally, some conclusions including the ad-
vantages of the proposed method are noted in
Section 5.

The plot of the posterior with lambda=6
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The plot of the posterior with lambda=-2
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Figure 2: The Plot of w(\|y)
values of A.

in (3.11) for different

TESL plot and posterior plot with lambda=3 difference between TESL plot and posterior plot

1)
fa(x)

Figure 3: w(MAy) in (3.11) for A = 3 and TESL(3)
(left), the difference between the 7(Aly) and TESL(3)
(right).

Table 1: Comparison of Bayesian estimators for the TESLD
versus ASLD, (A =2)

for

2 Independence Jeffreys prior

TESS (1, 0, A) models

First, consider the particular skew-symmetric
model (1.5) without location and scale parame-
ters, that is, suppose that 4 =0 and 0 = 1. Let
Y ~ TESS()); then the PDF and CDF of YV are,

SLD TESLD
n b Ab(\))  MSE(N) Ay Ab(\y) MSE(N,)

SEL 100 1.98424 —0.01576  0.17300 1.98055 —0.01945 0.06207
200 1.96046 —0.03954  0.08796 1.99859  —0.00142 0.04103

500 2.02301  0.02301 0.02685 1.99905  —0.00095 0.01831

1000 1.98806 0.01194  0.01282 2.00526  0.00526 0.01067

LINEX,c=0.5 100 1.94021 —0.05979  0.15894 1.96254  —0.03746 0.06269
200 1.93951 —0.06049  0.08572 1.98953  —0.01047 0.04101

500 2.01428  0.01428 0.02605 1.99387  —0.00613 0.01831

1000 1.98386 0.01614  0.01283 2.00285  0.00285 0.01064

LINEX,c=2 100 1.82459 —0.17541  0.14898 1.90892  —0.09108 0.06841
200 1.88053 —0.11947  0.08537 1.96249  —0.03751 0.04192

500 1.98874 —0.01126  0.02462 1.97836  —0.02164 0.01863

1000 1.97140 0.02860  0.01305 1.99561 0.00439 0.01062
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posterior plot for sld method posterior plot for tesld method
Table 2: Comparison of Bayesian estimators for the TESLD g | o |
versus ASLD, (A =5) R
SLD TESLD EREN £
n X Ab)  MSE(W) X A MSE(\) °
100 537557 037587 352230 5.02328 0.02328 0.09566 2 | S
200 018 —0.01980  0.82275 499672 —0.00328  0.05815 E
500 4.99606 —0.00394  0.26541 497785 —0.02215  0.02582 .
1000 503436 003436 0.14907 499261 —0.00740  0.01711 g R
LINEX c=0.5 100 —0.19177  1.36591 4.99799 —0.00201 0.09380 S o . M - ; ) ] . . o
200 —0.23578  0.68166 498169 —0.01831  0.05798
500 ~0.08988  0.24884 196952 —0.03048  0.02615 A A
1000 —0.00952 _ 0.14102 498760 —0.01240  0.01716
LINEX c=2 100 —1.04642 155001 192315 —007652  0.09585
200 428313 —0.71687  0.86415 493706 0.06294 0.06018
500 4.68212 —0.31788 028718 49467 —0.05533

borror Figure 4: Posterior plot for ASLD, TESLD.

1000 4.86

—0.13301  0.14074 4.97262

Table 6: Comparison of Bayesian estimators for the TESLD
versus ASLD, (A = —10)

SLD TESLD
. . . . n N Ab)  MSE() X AN MSE(N)
Table 3: Comparison of Bayesian estimators for the TESLD SEL 100 1580797 —5.80797  306.9605 —10.00481 —0.00431 0.79240
versus ASLD, ()\ = ]_0) 200 ~11.16210  ~1.16210 994691  0.05309 047324
500 —10.71573 —0.71573  5.42981 ~10.00853 —0.00853 0.17808
1000 —~10.17523 017523 118961 —10.00204 —0.00294 0.13815
- = 100 —2132145 —11.32145 8456781 1026717 —0.26717  0.94820
SLD TESLD - 200 -10.03345 -8.03345  42.78654 10.07409  —0.07409 0.50002
i Ab) X Ab) MSEQ) 500 —10.90889  —1.90889 ~10.05929 0.18695
SEL 100 372096 10.28554  0.28554 1000 —10.54683  —0.54683 —10.02820 0.14036
200 1083872 0.83872 9.96801  —0.03109 100 2108761 16717 257336
500 1020852  0.20852 1010369 0.10369 200 1614672 10.48419 0.81351
1000 10.00312  0.00312 1001389 0.01389 0.12617 500 580221 66.45959 _10.21575 0.24146
LINEX,c=05 100 814897 -1.85103  7.56273 10.02631  0.02631 1.09922 1000 —2.03512  7.30468 —10.10507_—0.10507 0.15501
200 9.10914 —0.89086  4.29390 984539 —0.15615  0.53003
500 9.61212 —0.38882 287193 1005268 0.05268 0.20802
1000 9.69159  —0.30841  1.32848 998875 —0.01125  0.12484
LINEX.c=2 100 5.69502 19.3300 933902 —0.66098 126781
200 7.00555 9.92526 949797  —0.50203  0.69404 . .
500 8.31978 3.94971 090349  —0.09651  0.20258 respectlvely, given by

1000  8.94788  —1.05212  1.88404 9.91425  —0.08575 0.12840

B A
1 —exp(=A)

_ 1 —exp{—AFx(y)}
1 —exp(—2A)

fy(y) Ifx(y)exp{-AFx(y)},

Fy(y) , Yy, A ER. (2.6)

Table 4: Comparison of Bayesian estimators for the TESLD

- . )
versus ASLD, (A = 20) Recall that the Fisher’s information of the pa-
— T rameter A is defined as
n ~ A60n)  MSE(W ~ A0 ASEOY)
SEL 100 4281583  22.81583 3448.152 20.19108 4.96704 2
200 25.64084 5.64084 408.2569 19.96143 2.26955 8
500 21.52976 1.52976 35.98669 19.93658 0.72617
1000 20.25917  0.25017  11.32517 20.04948 0.52799 I()\) = F log (fY (Y) )
LINEX,c=0.5 100 11.52483 517 19.22393 4.63 6A
200 14.29944  —5.70056 19.47654 i 2.32437
500 17.08368 2.91632 19.74015  0.25985 0.76145 2
1000 18.08021 —1.91979 19.94973  —0.05027 0.51765 1 eXp ( - A)
LINEX,c=2 100 6.97231 —13.0277 16.96215 —3.03785 11 155 = E —_— .
200 9.32772  —10.67228  114.9091 18.20015 —1.79985 4.797

500 12.63988 —7.36017  56.16614 1918056 —0.81944 1méﬁ A 1-— exp(—)\)
1000 14.76564  —5.23436 29.53819 19.65813  —0.34187 0.60245 1 ( A)
exp(—
— 2( 1 —— " | Fx(Y) + F3(Y)]
A 1—exp(=A)

where

Table 5: Comparison of Bayesian estimators for the TESLD E (FX (Y))

versus ASLD, (A = —5)

<D TESID Table 7: Comparison of Bayesian estimators for the TESN D
n % A()  MSE(N) N 0w MSE() versus ASND, (A = 2)
SEL 100 555600 058600 —5.01806 —0.01806 __ 0.30302 ’
200 —5.10090  —0.10090 —5.05716  —0.05716  0.143085
500 ~0.14004 ~5.01198 —0.01198 005926 — —
1000 —0.02044 —5.00034  —0.00034  0.024171 < A;S‘:D e < f’i“"“‘p TSRO
LINEX.c=0.5 100 219926 58.1051 —5.00601 —0.09601 032612 2 L O MSE() 0 AbOw) MSEQ,,
200 _0.38883 149174 500584 —009584  0.15194 SEL 100 202319 0.02319  0.20848 196992 —0.03008  0.14885
500 024035 0.44966 502720 002720  0.06035 200 197681 —0.02320  0.06398 201111 001111 0.07122
1000 —5.075148  —0.07514  0.21632 —5.00790 —0.00790 0.02433 500 2.02700  0.02700  0.02780 2.01747  0.01747 0.02400

LINEX c=2 100 1161105 —6.61105 1383776 ~5.31195 —0.31195 0.18654 1000 200753 0.00753  0.01610 2.00987 _ 0.00987 0.01285
200 —6.706633 —1.70663  7.20022 —5.21530 —.21535 0.19881 100 1.98528  —0.01472  0.18625 1.93377  —0.06623 0.15019

500 559263 —059763  0.94077 5.07- 007339 0.06656 200 195989 —0.04011  0.06250 1.99286  —0.00714 0.07066

1000 —5.22288  —0.22288  0.29954 —5.03073 _ —0.03073 0.02552 500 2.01998  0.01098  0.02699 201229 0.01229 0.02381

1000 200412 0.00412  0.01593 200625 0.00625 0.01277

TINEX,c=2 T00 188328 011673  0.1537 82701 —0.17300 0.17067

200 191132 —0.08868  0.06198 1.93862  —0.06139 0.07300

500 1.99928 —0.00072  0.02523 1.99678  ~0.00322 0.02354

1000 1.99398 —0.00602  0.01560 1.99540  —0.00460 0.01270
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Table 8: Comparison of Bayesian estimators for the TESN D

versus ASND, (A =5)

SND TESND
n % Ab(N)  MSE() X () MSE()

SEL 100 5.48968  0.48968 5.15011 5.06612  0.06612 0.29335
200 5.18656  0.18656 0.90906 5.02383  0.02383 0.16488
500 505130  0.05139  0.36635 —0.00069  0.06002
0.00184 0.15494 —0.02142 0.02562
LINEX.c=0.5 —0.09418 1.54039 —0.01049 0.27730
—0.02947  0.68097 —0.01419 0.16108
—0.02720  0.33319 —0.01572  0.05978
—0.036 0.14391 —0.02891 0.02589
LINEX.c=2 —0.95 1.34876 —0.22847 0.29913
s —0.5247 0.65661 —0.12511 0.16697

500 475954 024045  0.31796 1.93067  —0.06033

1000 4.85426 —0.14574 0.15098 4.94873  —0.05127

Table 9: Comparison of Bayesian estimators for the TESN D
versus ASND, (A =10)

D TESND
n X Ab()  MSE(N) X Ab() MSE()
SEL 100 2246137 1246437 2080.787 10.09783  0.00783 0.93225
200 1452433 452433 699.6167 10.08433 0.62562
500 1014684  0.14684  2.28785 10.03488 0.19822
1000 9.97799  —0.02001  0.98952 10.03090  0.03090 0.09793
LINEX,c=05 100 877100 —1.22000  8.03551 081751 —0.15120  0.085643
200 942280 0 ) 651414 9.95785  —0.04215 0.58561
500 955803 —0.44197  1.80811 0.98146  —0.01553 0.01933
1000 9.69456  —0.30544  0.92517 10.00568  0.00568 0.09606
TINEX.c=2 100 593701 —4.06296 018279 —0.18271 1.30300
200 7.18702 —2.81298 9.60191  —0.39810 0.66576
500 832640 —1.67360 9.83685 —0.16315 0.28540
1000 8.981458  —1.01855 9.93097  —0.06904 0.09804

Table 10:

Comparison of Bayesian estimators for the

TESND versus ASND, (A = 20)

SND TESND

n N Ab(N)  MSE(y) N Ab(N) MSED)

SEL 100 64.20655 44.20655  7389.072 2053110  0.53110 165254
200 4042053 2042953 3512522 19.96831  —0.03168 1.85143

500 2234251 234251 69.79996 19.98528  —0.01472 0.79206

1000 2108524 1.08524  20.49246 20.00892  0.00892 0.32721

LINEX.c=0.5 100 1265343 —7.34657 62.55216 1953724 —0.46276 378772
200 1481486 518514  37.91769 19.48399  —0.51601 1.94955

500 1751208 —2.48792  15.92410 1978747 —0.21523 0.80583

1000 18.68688 1312 10.51897 19.90949  —0.09051 0.32876

LINEX c=2 100 732701 1267299 161.6213 1721012 —2.75588 9.80251
200 944080 —10.55920 113.2952 18.21297  —1.78703 4.49488

500 1283165 ~7.16835  54.03411 19.22507  —0.77493 1.28137

1000 15.09597  —4.90404  27.19161 19.61958  —0.38042 044637

95

Table 11: Comparison of Bayesian estimators for the
TESND versus ASND, (A = —5)

SND TESND
n % A0 MSE() X A00N) MSEQy)
SEL 100 546316 —0.46399 285308 —5.05173  —0.0577; 0.33506
200 —5.48392 —0.48392 2.31935 —5.08719  —0.08719 0.18176
500 —5.05585 —0.05585  0.31429 ~5.00740 —0.00740  0.05903
1000 —5.00070 —0.00070  0.11211 —5.03328  —0.03328 0.02544
LINEX.c=05 100 0635606 —1.38606 10.18978 —5.13501 —0.13501
200 —5.86281 —0.86281 4.69724 —5.12634  —0.12634
500 517158 017158  0.36912 ~5.02258  —0.02258
1000 —5.03991  —0.03991 0.11917 —5.04093  —0.04093 0.02610
LINEX,c=2 100 —9.42403 103 48.55797 —5.38672 67 0.55103
200 723875 —2.23875 17.35753 —5.24738  —.24738 0.25090
500 —5.46069 16069 0.69135 —5.06866  —0.06866  0.06574
1000 —5.16399 399 0.16348 —5.06400  —0.06400 0.02883

Table 12: Comparison of Bayesian estimators for the

TESND versus ASND, (A = —10)
SND TESND
n Ap Ab(\y) MSE(\) Ay Ab(A) MSE(\)

SEL 100 9.97350  0.02650 0.84848

200 —10.02179  —0.02179 0.52897

500 —10.09797  —0.0 7 0.26604

1000 0.011 0.09639

LINEX,c¢=0.5 100 2201.103 0.23485 0.99680

200 452.103 —0.15050 0.57846

500 9 - 9 6.86195
1000 —10.47716  —0.47716 1.95325

—0.14945 0.28384
—0.01412 0.09742

LINEX,c=2 100 30.41805 20.41805  2431.946 1.14108 2.61885
200 -2 065 —15.99065 741.2946 —0.56462 0.97304
500 —14.07392  —4.07392  30.13288 —10.30802  —0.30802 0.37236

1000 —11.70974  —1.70974 6.30170 —10.09059  —0.09059 0.10839

o A
oo Fx(y) 1 —exp(=2A)
X eXp(—i\Fx(y))dy , )
= T ooy ™ exp(—A) — —exp(—A) + —

fx(y)

and

1 exp(—A)
TN = %~ G-

Proposition 2.1. For the TESS()\) models, the
Fisher’s information of the parameter A satisfies
the following properties:

(i) I(X\) is symmetric about 0.

(i) For every A # 0, I(\) > 0.

(iii) I(X) has a finite limit; in fact,
limy_,0 I(A) = 5.

(iv) I(A) < 35.

(v) I(\) does not depend on f and F'.

Proof. See Appendix. O
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Table 13: Comparison of Bayesian estimators for the
TESLD versus ASLD, (o = 2,A =5)

0.35170
6 017100

Table 14: Comparison of Bayesian estimators for the
TESLD versus ASLD, (o = 2,\ = 10)

30673
76 840833 3.61008
0.00220 921845 141002

According to the above facts, the Jeffreys’ prior
of A is given by

1 exp(—2A)
) e \/ N e W)

Proposition 2.2. The Jeffreys’ prior m()\)
satisfies the following properties:

(2.7)

(i) w(A) is symmetric about A = 0 and it is

decreasing in |A|.
(ii) The tails of 7(\) are of order O(|\|71).
(iii) w(X) is improper.

(iv) I(\) does not depend on f and F.
Proof. See Appendix. O

Figure 1 illustrates the tail behavior, symme-
try, and improperness of the Jeffreys’ prior of A.
Let y1,v2,...,yn be a random sample with ¥ ~
TESS(X). The posterior distribution of A using
the Jeffreys’ prior (2.7) is given by

T(Aly) < 7(A) x L(\) =

1 exp(=A) A "
\/A2 (1 —exp(=A))? (1 - exp(—M)

x [ fx (i) exp{=AFx (i)}

i=1

Although m(\) is improper, in the next section,
we have shown that it yields a proper posterior
distribution for some distributions. The proof of
whether these priors lead to proper or improper
posteriors depends on the choice of functions f
and F in (1.5).
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In continuation, we consider the class of skew dis-
tributions (1.5) to derive the Fisher information
of u,o, and .

Proposition 2.3. The Jeffreys’ priors associated
with the model (1.5) are

w(w) x 1, 7(0) x =

W()\)O(\/)\lQ

exp(—A)
Proof. See Appendix. O

(1 — exp(—=A))”

Accordingly, the independence Jeffreys’ prior of
= (pu,0,\) corresponding to model (1.5) is given
by

w0 =mi(moN) = Sx(). (28)

Proposition 2.4. For the TESS(u, o0, \) model,
the wr(u, o, \) satisfies the following properties:
(i) wr(p, o, \) is symmetric about A = 0.

(ii) The tails of mr(p, o, \) are of order O(|\|71).

(iii) mr(p, o, A) is improper.
Proof. The proof is similar to the proof of the
proposition(2.2). O

Let 41,92, ...,yn be arandom sample with Y ~
TESS(u,0,\). Using the prior structure in (2.8),
the corresponding joint posterior distribution for
[T AT

W(uv a, >\|) X L(:U‘v g, >‘)7TI(.U‘7 g, >\)

_ A \/1 oD
T oI — ()" | X T (T —exp(-V)?

x Efx (yi;“) exp (—AFX (%)) (2.9)

By considering the Bayesian analysis under im-
proper priors, it is important to check if these
priors yield proper posterior distributions or not.
For TESS models, although the 77(i, o, A) is im-
proper, we will show that it leads to posterior dis-
tribution for some densities.

To achieve the purpose, by using the logistic

PDF and CDF, f(t) = 220, and F(t) =

1.5), we construct the truncated-

1 .
1+exp(—t) m (
exponential skew-logistic (TESL) distributions.
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Figure 5: Posterior plot for ASND, TESND.
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Figure 6: Trace plot for SLD and TESLD with \ = 2

3 Bayesian inference for TESL distri-
bution

Mirzadeh and Iranmanesh [18] introduced a
new skew-logistic distribution which is based
on TESS distribution, called T ESL distribution.

Definition 3.1. A random wvariable Y has the
TESL distribution with parameters p € R,o > 0

and A € R, denoted by TESL(p,0,\), if its PDF

18 given by

Aexp[—(y — p)/o]
o1 — exp(=A)][L + exp[—(y — p)/0])?
—A ) ,y € R.

Iy(y) =

X ex

P\ T exp (v~ /o] (3.10)

Then the CDF of Y 1is

Fy(y) = {m}

* {1 e (1 +exp[_‘<2 —m/o})} vek

If w =0 and 0 = 1, then it is denoted by Y ~
TESL(A) .
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Figure 7: Trace plot for SLD and TESLD with A =5
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Figure 8: Trace plot for SLD and TESLD with A = 10
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trace plot for lambda=20,iterate=1000 by sld method
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Figure 9: Trace plot for SLD and TESLD with A = 20

Let Y1,Y2, .-

, Yn be arandom sample with Y ~

TESL()). The posterior distribution of A using
the (2.8) is given by

m(Aly)

R

1
a
7 exp(—yi)
! Sepermyy:
- 1
oo <)\; 1+exp(y¢))
1 exp(—A) A
. (

1- exp(f)\))2 1-— exp(f)\))
X H exp <Z
i=1

exp(—A) A "
1- exp(f)\))2 <1 — exp(f)\))

(3.11)

n
=1

e S
L+exp(—y) )

Figure 2 shows that the posterior distribution

derived

in (3.11) is proper. Empirically, we have

found that 7(A|y) can be reasonably well ap-
proximated by a TESL(\) distribution. Figure
3 illustrates the quality of this approximation.

Let Y1, Y2,

,Yn be a random sample with

Y ~TESL(p,0,\). The corresponding joint the
posterior distribution for p,o, A associated to
(3.10) with the independence Jeffreys’ prior in
(2.8) according to (2.9) is derived as follows:

wr(p,0,A) o

A’VL
"+ (L — exp(—\)"
e
X T (1= exp(—N))?

2 (1 Tf‘f ()‘)(’”a“))
ﬁ exp (— (¥4 2
i=1 | (1+ exp (, (%))

In the simulations, we describe later,

A

X

exp

(3.12)

we compare the Bayesian estimator of skewness
parameters in (3.10) and Azzalini skew-logistic
distribution (ASLD). For this purpose, we are
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Table 15: Comparison of Bayesian estimators
TESLD versus ASLD, (o =5\ =5)
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Table 16: Comparison of Bayesian estimators

TESLD versus ASLD, (o = 5,A =10)
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Table 17: Comparison of Bayesian estimators

TESLD versus ASLD, (o = 4,A = 3)
5D TESID

n T MSE(a,) Ay A MSE(\)
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Table 18: Comparison of Bayesian estimators for the
TESLD versus ASLD, (o = 10,A = 8)

TESLD

o
DOSLIT
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6 006081 7
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Table 19: Comparison of Bayesian estimators for the
TESLD versus ASLD, (o = 8\ = 15)

SEL
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LINEX.c—05 200 0
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15.01416

13,0151
55 1403639 161696
6 1458678 0.67353

TINEX.c=2 200 0.27399
7 0.08361

02 1
1000 7.92002  0.05887 1237616 818808

Table 20: Comparison of Bayesian estimators for the
TESLD versus ASLD, (u=3,0 =5,A=2)

B
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Table 21: Comparison of Bayesian estimators for the
TESLD versus ASLD, (un=4,0 =8,A=25)

Table 22: Comparison of Bayesian estimators for the
TESLD versus ASLD, (u="7,0 =6, = 10)

SiD TESLD

99

reminded of Azzalini skew-logistic distribution,
termed X ~ SL(u,0, ) as a special case of (1.1)
with PDF

2 em(-TzH) |
Fx(@) = o (l+exp(—%£))2 1+ exp(—)\%)A

(3.13)

o

For (p,0) = (0,1), it is denoted by SL(A). The
Jeffreys’ prior and the posterior distribution as-
sociated with SL(\) are given by

m(A) o \//000 z2Sech? (g) Sech? ()\g) dz, (3.14)

Az

2 2 (T 2

T(Aly) o \//0 z2Sech (2)Sech (2 )dar:
n 1

H 14 exp(=Ay;)

i=1

Rubio and Liseo [22] proved that the w(A) is
proper, so it follows that the w(\A|y) is proper,

too.

Similarly, the independence Jeffreys’ prior of
(1, 0,\) corresponding to model (3.13) is given
by

1
mr(mo N« —m(N)
o

= i\//(;oo z2Sech? (g) Sech? (/\—;> dx (3.15)
and the posterior distribution is
; /oo z2Sech? (E) Sech? (E) dx
ontl {Jo 2 2
n i M 1

oo (- 552)
i=1 (1 + exp (—%))2 1+ exp (—A%) ’

(w0, Aly) o

X

4 Simulation analysis

To illustrate the results of the previous sections,
we now apply our findings in three examples. In
examples (4) and (4) we computed Bayesian es-
timators for the skewness parameter A and in
example (4), we computed Bayesian estimators
for the location parameter u, scale parameter o
and skewness parameter A when the error loss
function is square error loss (SEL) and Linex loss
function (for ¢ = 0.5,2) is defined by

~ ~

L(0.0)=(0—6)2,6€D, 6co.

~

L(6,8) = b |20 _q@—6) - 1],
a#0,b>0,0€eD, 0cO.
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For this purpose, we generated samples of differ-
ent sizes from the desired distribution. We re-
peated this process one hundred times and com-

puted the average of the estimates, the average
of the bias (Ab), and the average of the mean
squared error (MSE). As we know that under SEL
the Bayesian estimators for A and ¢ are given by

" EQ\) = /}HO} Ar(A)dA,

Bloh= [, omlohis

op = (4.16)

and that under the Linex loss function, the
Bayesian estimators for A and o are given by

Ab

— log B (exp(—e))

-1
- log ([e{o} exp(—cA)m (A]) d)\> ,

= log B (exp(~co))

-1
— log </ o exp(—co)m (o)da) . (4.7

C

Op

As expected, the posterior densities have compli-
cated integration. Therefore, the Markov chain
Monte Carlo (MCMC) method was considered
to obtain the posterior estimates. Gaining the
goal, we used the Metropolis—-Hastings algorithm
to simulate the posterior quantities. For each
simulated data set, 50000 iterations were per-
formed using MCMC methods. As a burn-in,
the first 1000 initial values were discarded. As
a first example, we consider the above method
for TESL(X) and SL()\), that is, we assume
that 4 = 0 and ¢ = 1. For this purpose, we
generated samples of size n = 100, 200, 500, 1000
for A = —5,-10,2,5,10,20 from TESL()) and
SL(\).

The results are represented in Tables 1 — 6.
According to those tables, the biases and the
mean squared errors in TESL(\) approach zero
with increasing n, but the result in ASL(\)
is not good. Especially for large values of A,
the Bayesian estimator of A is much better
in TESLD. Figure 1 shows the generated
posterior density in TESLD and ASLD models
by MCMC methods. That Figure suggests a
better convergence of the TESL model. Figures
6 — 11 show the trace plot of TESLD and
ASLD for different values of A\. These Figures
suggest a better convergence of the TESL
model. As a second example, we calculate
the Bayesian estimators for parameters in
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the truncated-exponential skew-normal distri-
bution (TESND) and Azzalini skew-normal
distribution (ASND). We simulated samples
of size n = 100,200,500,1000 from TESND
and ASND with parameters y = 0, ¢ = 1 and
A= —10,-5,2,5,10,20. The results are reported
in Tables 7 — 12. Overall, the biases and the
mean squared errors of estimators in TESND
are better than those in ASND, especially for
large values of X. Figure 5 shows the generated
posterior density in TESND and ASN D models
by MCMC methods. That Figure suggests a
better convergence of the TESN model. In
this example, we compare the performances
of the Bayesian estimator of (u,o,\) when X
is TESL(u,0,\) and SL(u,o0,\) distribution,
presented in Section 3. For this purpose, we
generated samples of size n = 200,500, 1000
from (3.10) and (3.13) for (u,0,A) =
(0,2,5),(0,2,10),(0,5,5),(0,5,10), (0,4, 3)
,(0,10,8),(0,8,15), (3,5,2), (4,8,5),(7,6,10).
To compute estimators, m(o,\|) is replaced in
(4.16) and (4.17). The results are reported in
Tables 13 — 22. Those tables show how the mean
squared errors for the TESLD are smaller than
SLD. Also as shown in these tables, the Bayesian
estimator in TESLD(A) becomes more accurate
than the SLD(\) model as the absolute value of
skewness parameter increases. In general, the
use of a TESSD seems appropriate to model
asymmetric data. This is because of the evidence
presented in Tables 1 — 22 that estimators based
on TESS distributions have smaller biases and
smaller mean squared errors than estimators
based on Aszzalini skew distributions. R codes
for these examples are available upon request.

5 Conclusion

We have studied the Jeffreys’ prior of the skew-
ness parameter of TFESS models as well as the
independence Jeffreys’ prior for the same class
models with unknown location and scale param-
eters. We have also investigated the properties
of this proper distribution such as symmetry, im-
properness, and the order of tails. We have also
presented the existence of the posterior distribu-
tion for some subclass of TESS models such as
the truncated-exponential skew-normal and the
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truncated exponential skew-logistic distributions.
In the simulation studies, it was proved that the
Bayesian estimators for parameters based on the
Jeffreys’ prior in TESS distributions can be ex-
pected to be better than the Azzalini skew distri-
butions.

Appendix

Proof of Proposition 2.1.
(i) Since I(A\) = I(—\), I(\) is symmetric about
0.

(ii)
1 exp(—A)
= e e
[1 — exp(=A)]* — A exp(—2)

A2 (1 = exp(—A))?

Since [1 — exp(—=\)]2 > Aexp(—A) the proof is
complete.
(iii) We have

) e 1 exp(—A)
1y 109 = (5~ - )

by applying the L’'Hopital’s rule four times, we
get limy 0 I(A\) = %

(iv) Note that since

% > 0 then

1 exp(—A) 1
_ < —

X (1—exp(-N)? A

Therefore I(A) is upper bounded. It follows that

I()) has tails of order O(|\|72).

(v) We see that I(\) does not depend on f and

F.

Proof of Proposition 2.2.

(i) 7(A) = w(—=A) then w(\) is symmetric about

A = 0. Since dz(;‘) < 0, then 7(\) is decreasing

in [\

(ii) According to (5.18), 0 < w(\) <

tails of (\) are of order O(J]A|™1).

(iii) Note that since 7(A) is undefined at A = 0

and the tails of w()\) are of order O(|A|71), w(\)

is improper.

(iv) We see that I(\) does not depend on f and

F.

Proof of Proposition 2.3.

The logarithm of (1.5) is given by

0<IN)=

(5.18)

%. Then the

IOg(fy(y;M,O', )‘)) =

log <1_eXAp(_A>) ~ log(o)
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+ log(fx(t)) — AFx(t),

where t = Y=£. The Fisher information of u,o,

and A can be written as follows:

2
I(p) = E(aglog(fy(Y 1y 0, A) )
_ 5 (T) :
- aQE(f GRECLL)
T l—exp( N) .
< [T (D) xo
X exp( /\Fx(t))d:):,
2
10) = B toatfr(¥imo V)

Ix(T)

(1 — exp(—N))

(e

X exp (—AFx (1)) da,

! 2
= %E (1 L rfx@ ,\TfX(T))
g
A

>)2 Fx (0

2

oA

_ 1 exp(—A) 2
= 2(3- oy )

_ 1 exp(—M)
= (5 )
1 exp(—A)

X2 (1—exp(—A\)2’

10 = B (e (Vima )

Thus the Jeffreys’ priors associated with this
model are

1 1 exp(—2)
() o1, (o) o~ w(N) ox \/)\ T (1 —exp(—A)%

References

[1] A. Azzalini, A class of distributions include
the normal ones, Scandinavian Journal of
Statistics 12 (1985) 171-178.

[2] A. Azzalini, Further results on a class of dis-
tributions which includes the normal ones,
Statistica XLVI (1986) 199-208.

[3] A. Azzalini, A. Capitanio, Statistical appli-
cations of the multivariate skew normal dis-
tribution, Journal of the Royal Statistical
Society: Series B (Statistical Methodology)
61 (1999) 579-602.



102

[4]

[11]

[12]

A. Azzalini, A. Capitanio, Distributions
generated by perturbation of symmetry
with emphasis on a multivariate skew t-
distribution, Journal of the Royal Statistical
Society: Series B (Statistical Methodology)
65 (2003) 367-389. doi.org/10.1111/1467-
9868.00391

A. Azzalini, M. G. Genton, Robust like-
lihood methods based on the skew-t
and related distributions, International
Statistical Review 76 (2008) 106-129,
doi.org/10.1111/;.1751-5823.2007.00016.x

B.
analysis

M. D. E. Branco, M. G. Genton,
Liseo, Objective  Bayesian
of skew-t distributions,  Scandinavian
Journal of Statistics 40 (2013) 63-85,
doi:101111/j.1467.9469.2011.00779.x

S. Cabras, W. Racugno, M. E. Castel-
lanos, L. Ventura, A matching prior for the
shape parameter of the skew-normal distri-
bution, Scandinavian Journal of Statistics
39 (2012) 236-247, doi.org/10.1111/j.1467-
9469.2011.0775.x

A. Canale, E. C. Kenne Pagui, B. Scarpa,
Bayesian modeling of university first-year
students’ grades after placement test, Jour-
nal of Applied Statistics 43 (2016) 3015-3029,
doi.org/10.1080/02664763.2016.1157144

H. Dette, C. Ley,
(Non) Informative Skew-
symmetric  Distributions,  Scandinavian
Journal of Statistics 45 (2018) 405-420.
doi.org/10.1111/sjos.12306

F. Rubio,

Priors

Natural
for

J. T. A. S. Ferreira, M. F. J. Steel,
A constructive representation of univariate
skewed distributions, Journal of the Amer-
ican Statistical Association 101 (2006) 823-
829. doi.org/10.1198/016214505000001212

F. Ghaderinezhad, C. Ley and N. Loper-
fido, Bayesian Inference for Skew-Symmetric
Distributions, Symmetry 12 (2020) 491-505,
doi.org/10.3390/sym12040491

M. Hallin, C. Ley, Skew-symmetric distri-
butions and Fisher information —a tale of

S. Mirzadeh et al., /IJIM Vol. 14, No. 1 (2022) 91-103

[13]

[17]

[19]

[21]

[22]

two densities, Bernoulli 18 (2012) 747-763,
doi.org/10.3150/12-BEJ346

M. C. Jones, On families of distributions
with shape parameters (with discussion), In-
ternational Statistical Review 83 (2015) 175-
192, doi.org/10.1111 /insr.12055

C. Ley, Flexible modelling in statistics: past,
present and future, Journal de la Socit
Franaise de Statistique 156 (2015) 76-96.

C. Ley, D. Paindaveine, On the singularity of
multivariate skew-symmetric models, Jour-
nal of Multivariate Analysis 101 (2010) 1434-
1444, doi.org/10.1016/j.jmva.2009.10.008

B. Liseo, N. Loperfido, Default Bayesian
analysis of the skew-normal distribution,

Journal of Statistical Planning and Inference
136 (2004) 373-389.

B. Liseo, N. Loperfido, A note on ref-
erence priors for the scalar skew-normal
distribution, Journal of Statistical Plan-
ning and Inference 136 (2006) 373-389.
doi.org/10.1016/j.jspi.2004.06.062

S. Mirzadeh, A. Iranmanesh, A new
class of skew-logistic distribution, Math-
ematical Sciences 13 (2019) 375-385,
doi.org/10.1007/s40096-019-00306-8

S. Nadarajah, The skew-logistic distribution,
AStA Advances in Statistical Analysis 93
(2009) 187-203, doi.org/10.1007 /s10182-009-
0105-6

S. Nadarajah,
Mohammadpour,
exponential skew-symmetric distri-
butions, Statistics 48 (2014) 872-895,
doi.org/10.1080/02331888.2013.821474

V. Nassiri, A.

Truncated-

A. Pewsey, Problems of inference for Az-
zalini’s skewnormal distribution, Journal
of applied statistics 27 (2000) 859-870,
doi.org/10.1080/02664760050120542

F. J. Rubio, B. Liseo, On the independence
Jeffreys’ prior for skew-symmetric models,
Statistics and Probability Letters 85 (2014)
91-97, doi.org/10.1016/j.spl.2013.11.012


https://
https://
https://
https://
https://
https://
https://
https://
https://
https://
https://
https://
https://
http://dx.
https://
http://dx.
http://dx.
https://
https://
https://

S. Mirzadeh et al., /IJIM Vol. 14, No. 1 (2022) 91-103 103

[23] J. Wang, J. Boyer, M. G. Genton, A
skew-symmetric representation of multivari-
ate distributions, Statistica Sinica 14 (2004)
1259-1270.

Saeed Mirzadeh is an instructor at
the Islamic Azad University, Tor-
bat Heydariyeh Branch. He re-
ceived his M.S. in Applied Mathe-
matics from K. N. Toosi University
of Technology in 2001 and Ph.D. in
statistics from Islamic Azad Uni-
versity, Mashhad Branch in 2021. His research
interests are Distribution theory, Bayesian infer-
ence, Computational statistics, and Linear mod-
els

Anis Iranmanesh is an assistant
professor at the Islamic Azad Uni-
versity, Mashhad Branch. She re-
ceived her B.S., M.S., and Ph.D.
in statistics from the Ferdowsi Uni-
versity of Mashhad in 1988, 1992,
and 2012, respectively. Her re-
search interests are Distribution theory, Multi-
variate analysis, Bayesian inference, and Non-
parametric methods.

Ehsan Ormoz is an assistant pro-
fessor at the Islamic Azad Uni-
versity, Mashhad Branch. He re-
ceived his M.S. and Ph.D. in statis-
tics from Allameh Tabatabai Uni-
versity and Islamic Azad Univer-
sity Science and Research Branch
in 2005 and 2009, respectively. His research in-
terests are Computational Statistics, Statistical
learning, Variable selection, and Categorical data
modeling.




	Introduction
	Independence Jeffreys prior for TESS(, , ) models
	Bayesian inference for TESL distribution
	Simulation analysis
	Conclusion

