Selenium Supplementation Efficacy in Small Ruminants: A Review
Subject Areas : CamelA.B. Amin 1 * , R. Audu 2 , A.A. Ibrahim 3 , M. Dalha 4 , M.T. Aleem 5 * , A.I. Abdullahi 6
1 - Department of Animal Science, Federal University Dutse, P.M.B 7156 Dutse, Jigawa State, Nigeria|College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
2 - Department of Animal Science, Federal University Dutse, P.M.B 7156 Dutse, Jigawa State, Nigeria
3 - Department of Animal Science, Federal University Dutse, P.M.B 7156 Dutse, Jigawa State, Nigeria
4 - Department of Animal Science, Federal University Dutse, P.M.B 7156 Dutse, Jigawa State, Nigeria
5 - MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
6 - National Productivity Centre, Abuja, Nigeria
Keywords: immunity, Antioxidant, rumen fermentation, selenium, Glutathione peroxidase,
Abstract :
This review is aimed at highlighting the role of selenium (Se) in enhancing the antioxidant status in the blood, immune response, reproductive performance, rumen fermentation, as well as feed efficiency, and weight gain in small ruminants. Selenium is supplied in small ruminant’s diet in organic form, inorganic form, or selenium nanoparticles (nano-Se). Each form of Se is metabolized differently and exhibits different levels of bioavailability with nano-Se having the highest bioavailability followed by organic Se. A sufficient supply of Se in small ruminant’s diet is important to maintain the proper functioning of the antioxidant defense system which reduces the detrimental effects of free radicals in cells thereby preventing the incidence of metabolic diseases. The ability of Se to improve the antioxidant capacity of the cells also helps to strengthen the immune response of animals and ameliorate the detrimental effects of heat stress. Selenium has also been proven to modify rumen fermentation and microbiota which translated to improved feed efficiency and enhanced weight gain. However, the activities and bioavailability of Se are limited by several factors including the rumen microbiota, the form of Se, and competition with other minerals. Further studies need to investigate the effects of Se on rumen microbiology and heat stress in small ruminants.
Ahmadi M., Ahmadian A., Poorghasemi M., Makovicky P. and Seidavi A. (2018). Nano-selenium affects on duodenum, jejunum, ileum and coloncharacteristics in chicks: An animal model. Int. J. Nano Dimens. 10(2), 225-229.
Ahmadi M., Poorghasemi M., Seidavi A., Hatzigiannakis E. and Milis C. (2019). An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. J. Elementol. 25(3), 1178-1198.
Alhidary I.A., Shini S., Al Jassim R.A.M., Abudabos A.M. and Gaughan J.B. (2015). Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J. Anim. Sci. 93, 576-588.
Alhidary I.A., Shini S., Al Jassim R.A.M. and Gaughan J.B. (2012). Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load. J. Anim. Sci. 90, 2988-2994.
Amin A.B., Zhang L., Zhang J. and Mao S. (2022). Metagenomic and metabolomic insights into the mechanism underlying the disparity in milk yield of Holstein cows. Front. Microbiol. 13, 844968.
Arshad M.A., Ebeid H.M. and Hassan F.U. (2021). Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: A review. Biol. Trace Elem. Res. 199, 3319-3337.
Badgar K. and Prokisch J. (2020). The effects of selenium nanoparticles (SeNPs) on ruminant. Proc. Mong. Acad. Sci. 60, 1-8.
Baiomy A.A., Mohamed A.E.A. and Mottelib A.A. (2009). Effect of dietary selenium and vitamin E supplementation on productive and reproductive performance in rams. BS. Vet. Med. J. 19, 39-43.
Bialek M., Czauderna M. and Zaworski K. (2020). Diets enriched in fish and rapeseed oils, carnosic acid, and different chemical forms of selenium affect fatty acid profile in the periintestinal fat and indices of nutritional properties of selected tissues of lambs. Agric. Food. Sci. 29, 405-419.
Carr S., Jia Y., Crites B., Hamilton C., Burris W., Edwards J.L., Matthews J. and Bridges P.J. (2020). Form of supplemental selenium in vitamin-mineral premixes differentially affects early luteal and gestational concentrations of progesterone, and postpartum concentrations of prolactin in beef cows. Animals. 10, 967-975.
Chauhan S.S., Ponnampalam E.N., Celi P., Hopkins D.L., Leury B.J. and Dunshea F.R. (2016). High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin. Res. 137, 17-23.
Cui X., Wang Z., Tan Y., Chang S., Zheng H., Wang H., Yan T., Guru T. and Hou F. (2021). Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of Tibetan sheep (Ovis aries) in Alpine meadow. Front. Microbiol. 12, 663945.
Czauderna M., Białek M., Krajewska K.A., Ruszczyńska A. and Bulska E. (2017). Selenium supplementation into diets containing carnosic acid, fish and rapeseed oils affects the chemical profile of whole blood in lambs. J. Anim. Feed. Sci. 26, 192-203.
Danielsson R., Schnurer A., Arthurson V. and Bertilsson J. (2012). Methanogenic population and CH4 production in swedish dairy cows fed different levels of forage. Appl. Environ. Microbiol. 78, 6172-6179.
Davis T.Z., Tiwary A.K., Stegelmeier B.L., Pfister J.A., Panter K.E. and Hall J.O. (2017). Comparative oral dose toxicokinetics of sodium selenite and selenomethionine. J. Appl. Toxicol. 37, 231-238.
Diyabalanage S., Dangolla A., Mallawa C., Rajapakse S. and Chandrajith R. (2020). Bioavailability of selenium (Se) in cattle population in Sri Lanka based on qualitative determination of glutathione peroxidase (GSH-Px) activities. Environ. Geochem. Health. 42, 617-624.
El-Naby A.A.H., Ibrahim S., Hozyen H.F., Sosa A.S.A., Mahmoud K.G.M. and Farghali A.A. (2020). Impact of nano-selenium on nuclear maturation and genes expression profile of buffalo oocytes matured in vitro. Mol. Biol. Rep. 47, 8593-8603.
Ensley S. (2020). Evaluating mineral status in ruminant livestock. Vet. Clin. North Am. Food Anim. Pract. 36, 525-546.
Erdogan S., Karadas F., Yilmaz A. and Karaca S. (2017). The effect of organic selenium in feeding of ewes in late pregnancy on selenium transfer to progeny. Rev. Bras. Zootec. 46, 147-155.
Fairweather-Tait S.J., Collings R. and Hurst R. (2010). Selenium bioavailability: current knowledge and future research requirements. Am. J. Clin. Nutr. 91, 1484-1491.
Ferreira G.M. and Petzer I.M. (2019). Injectable organic and inorganic selenium in dairy cows–Effects on milk, blood and somatic cell count levels. Onderstepoort. J. Vet. Res. 86, 1-8.
Galbraith M.L., Vorachek W.R., Estill C.T., Whanger P.D., Bobe G., Davis T.Z. and Hall J.A. (2016). Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biol. Trace Elem. Res. 171, 338-343.
Gaweł S., Wardas M., Niedworok E. and Wardas P. (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek. 57, 453-455.
Ghaderzadeh S., Aghjehgheshlagh F.M., Nikbin S. and Navidshad B. (2020). Stimulatory effects of nano-selenium and conjugated linoleic acid on antioxidant activity, trace minerals, and gene expression response of growing male Moghani lambs. Vet. Res. Forum. 11, 385-391.
Gong J. and Xiao M. (2018). Effect of organic selenium supplementation on selenium status, oxidative stress, and antioxidant status in selenium-adequate dairy cows during the periparturient period. Biol. Trace Elem. Res. 186, 430-440.
Groce A., Miller E., Hitchcock J., Ullrey D. and Magee W.T. (1973). Selenium balance in the pig as affected by selenium source and vitamin E. J. Anim. Sci. 37, 942-947.
Guo Y.M., Gong J., Shi B.L., Guo X.Y. and Yan S.M. (2018). Effects of selenium on selenoprotein synthesis and antioxidant parameters of bovine mammary epithelial cells. Czech J. Anim. Sci. 63, 313-322.
Han L., Pang K., Fu T., Phillips C.J.C. and Gao T. (2021). Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows. Biol. Trace Elem. Res. 199, 113-119.
Hendawy A.O., Sugimura S., Sato K., Mansour M.M., Abd El-Aziz A.H., Samir H., Islam M.A., Bostami A.B.M.R., Mandour A.S., Elfadadny A., Ragab R.F., Abdelmageed H.A. and Ali A.M. (2022). Effects of selenium supplementation on rumen microbiota, rumen fermentation, and apparent nutrient digestibility of ruminant animals: A review. Fermentation. 8, 4-18.
Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., Bjørklund G., Sochor J. and Kizek R. (2018). Nano-selenium and its nanomedicine applications: a critical review. Int. J. Nanomed. 13, 2107-2128.
Ianni A., Bennato F., Martino C., Grotta L., Franceschini N. and Martino G. (2020). Proteolytic volatile profile and electrophoretic analysis of casein composition in milk and cheese derived from mironutrient-fed cows. Molecules. 25, 2249-2259.
Ianni A., Bennato F., Martino C., Innosa D., Grotta L. and Martino G. (2019). Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J. Dairy Sci. 102, 6853-6862.
Jamali N.U., Kaka A., Khatri P., Malhi M., Naeem M., Memon A.A., Kaleri R.R., Janyaro H. and Kalhoro D.H. (2019). Effect of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in kundhi buffalo bull and in vivo fertility rate. Pakistan J. Zool. 51, 317-323.
Juniper D.T., Rymer C. and Briens M. (2019). Bioefficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves. J. Dairy Sci. 102, 7000-7010.
Kachuee R., Abdi-Benemar H., Mansoori Y., Sánchez-Aparicio P., Seifdavati J., Elghandour M.M.M.Y., Guillén R.J. and Salem A.Z.M. (2019). Effects of sodium selenite, L-selenomethionine, and selenium nanoparticles during late pregnancy on selenium, zinc, copper, and iron concentrations in Khalkhali goats and their kids. Biol. Trace Elem. Res. 191, 389-402.
Khalil W.A., El-Harairy M.A., Zeidan A.E.B. and Hassan M.A.E. (2019). Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology. 126, 121-127.
Khalili M., Chamani M., Amanlou H., Nikkhah A., Sadeghi A.A., Dehkordi F.K., Rafiei M. and Shirani V. (2020). The effect of feeding inorganic and organic selenium sources on the hematological blood parameters, reproduction and health of dairy cows in the transition period. Acta Sci. Anim. Sci. 42, e45371.
Khatti A., Mehrotra S., Patel P.K., Singh G., Maurya V.P., Mahla A.S., Chaudhari R.K., Das G.K., Singh M., Sarkar M., Kumar H. and Krishnaswamy N. (2017). Supplementation of vitamin E, selenium and increased energy allowance mitigates the transition stress and improves postpartum reproductive performance in the crossbred cow. Theriogenology. 104, 142-148.
Kipp A.P., Frombach J., Deubel S. and Brigelius-Flohé R. (2013). Chapter five - selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynthesis. Methods Enzymol. 527, 87-112.
Lee M.R.F., Fleming H.R., Whittington F., Hodgson C., Suraj P.T. and Davies D.R. (2019). The potential of silage lactic acid bacteria-derived nano-selenium as a dietary supplement in sheep. J. Anim. Prod. Sci. 59, 1999-2009.
Libera K., Konieczny K., Witkowska K., Żurek K., Szumacher-Strabel M., Cieslak A. and Smulski S. (2021). The association between selected dietary minerals and mastitis in dairy cows-A review. Animals. 11, 2330-2341.
Ling K., Henno M., Jõudu I., Püssa T., Jaakson H., Kass M., Anton D. and Ots M. (2017). Selenium supplementation of diets of dairy cows to produce Se-enriched cheese. Int. Dairy J. 71, 76-81.
Lizarraga R.M., Anchordoquy J.M., Galarza E.M., Farnetano N.A., Carranza-Martin A., Furnus C.C., Mattioli G.A. and Anchordoquy J.P. (2020). Sodium selenite improves in vitro maturation of Bos taurus oocytes. Biol. Trace Elem. Res. 197, 149-158.
Lukusa K. and Lehloenya K.C. (2017). Selenium supplementation improves testicular characteristics and semen quality of Saanen bucks. Small Rumin. Res. 151, 52-58.
Mahmoud G.B., Abdel-Raheem S.M. and Hussein H.A. (2013). Effect of combination of vitamin E and selenium injections on reproductive performance and blood parameters of Ossimi rams. Small Rumin. Res. 113, 103-108.
Maraba K.P., Mlambo V., Yusuf A.O., Marume U. and Hugo A. (2018). Extra dietary vitamin E – selenium as a mitigation strategy against housing-induced stress in Dohne Merino lambs: Effect on growth performance, stress biomarkers, and meat quality. Small Rumin. Res. 160, 31-37.
Marai I.F.M., El-Darawany A.H., Ismail E. and Abdel-Hafez M.A.M. (2009). Reproductive and physiological traits of Egyptian Suffolk rams as affected by selenium dietary supplementation and housing heat radiation effects during winter of the sub-tropical environment of Egypt. Archiv. Tierzucht. 52, 402-409.
Mitsiopoulou C., Karaiskou C., Simoni M., Righi F., Pappas A.C., Sotirakoglou K. and Tsiplakou E. (2021). Influence of dietary sesame meal, vitamin E and selenium supplementation on milk production, composition, and fatty acid profile in dairy goats. Livest. Sci. 244, 104336.
Mojapelo M.M. and Lehloenya K.C. (2019). Effect of selenium supplementation on attainment of puberty in Saanen male goat kids. Theriogenology. 138, 9-15.
Mojapelo M.M., van Ryssen J.B.J. and Lehloenya K.C. (2021). Selenium supplementation reduces induced stress, enhances semen quality and reproductive hormones in Saanen bucks. Small Rumin. Res. 201, 106443.
Mousaie A. (2021). Dietary supranutritional supplementation of selenium-enriched yeast improves feed efficiency and blood antioxidant status of growing lambs reared under warm environmental condition. Trop. Anim. Health Prod. 53, 138-145.
Mudron P. and Rehage J. (2018). Effects of vitamin E and selenium supplementation on blood lipid peroxidation and cortisol concentration in dairy cows undergoing omentopexy. J. Anim. Physiol. Anim. Nutr. 102, 837-842.
Muegge C.R., Brennan K.M. and Schoonmaker J.P. (2017). Supplementation of organic and inorganic selenium to late gestation and early lactation beef cows effect on progeny feedlot performance and carcass characteristics. J. Anim. Sci. 95, 1356-1362.
Nateq S., Moghaddam G., Alijani S. and Behnam M. (2020). The effects of different levels of Nano selenium on the quality of frozen-thawed sperm in ram. J. Appl. Anim. Res. 48, 434-439.
Naziroglu M., Aksakal M., Cay M. and Celik S. (1997). Effects of vitamin E and selenium on some rumen parameters in lambs. Acta Vet. Hung. 45, 447-456.
Niwinska B. and Andrzejewski M. (2017). Effects of selenium supplement forms on the diet-cow-calf transfer of selenium in Simmental cattle. Czech J. Anim. Sci. 62, 201-210.
Novoselec J., Speranda M., Klir Z., Mioc B., Steiner Z. and Antunovic Z. (2017). Blood biochemical indicators and concentration of thyroid hormones in heavily pregnant and lactating ewes depending on selenium supplementation. Acta Vet. Brno. 86, 353-363.
Ortman K. and Pehrson B. (1997). Selenite and selenium yeast as feed supplements for dairy cows. J. Vet. Med A-Physiol. Pathol. Clin. Med. 44, 373-380.
Paiva F.A., Netto A.S., Corrêa L.B., Silva T.H., Guimarães I.C.S.B., Del Claro G.R., Cunha J.A. and Zanetti M.A. (2019). Organic selenium supplementation increases muscle selenium content in growing lambs compared to inorganic source. Small Rumin. Res. 175, 57-64.
Pan Y., Wang Y., Lou S., Wanapat M., Wang Z., Zhu W. and Hou F. (2021). Selenium supplementation improves nutrient intake and digestibility, and mitigates CH4 emissions from sheep grazed on the mixed pasture of alfalfa and tall fescue. J. Anim. Physiol. Anim. Nutr. 105, 611-620.
Patra A. and Lalhriatpuii M. (2020). Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding: A review. Biol. Trace Elem. Res. 197, 233-253.
Patra A.K. and Kar I. (2021). Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. J. Anim. Sci. Technol. 63, 211-247.
Piagentini M., Silva D., Dell'Aqua C., Moya-Araujo C., Codognoto V., Ramos A. and Oba E. (2017). Effect of selenium supplementation on semen characteristics of Brazil's ram. Reprod. Domest. Anim. 52, 355-358.
Prince K., Khan M.S., Ijaz M., Anjum A.A., Prince A., Khan N.U. and Khan M.A. (2017). Effect of prepartum vitamin e and selenium on antibody transfer in colostrum and cattle calves. Pakistan J. Zool. 49, 2057-2066.
Pulido E., Fernández M., Prieto N., Baldwin R.L., Andrés S., López S. and Giráldez F.J. (2019). Effect of milking frequency and α-tocopherol plus selenium supplementation on sheep milk lipid composition and oxidative stability. J. Dairy Sci. 102, 3097-3109.
Rashnoo M., Rahmati Z., Azarfar A. and Fadayifar A. (2020). The effects of maternal supplementation of selenium and iodine via slow-release blouses in late pregnancy on milk production of goats and performance of their kids. Italian J. Anim. Sci. 19, 502-513.
Reczyńska D., Witek B., Jarczak J., Czopowicz M., Mickiewicz M., Kaba J., Zwierzchowski L. and Bagnicka E. (2019). The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J. Dairy Res. 86, 48-54.
Rezaei S.A. and Dalir-Naghadeh B. (2009). Association of plasma and heart homocysteine and blood malondialdehyde with cardiovascular diseases induced by acute selenium deficiency in lambs. Small Rumin. Res. 83, 22-28.
Shi L., Zhang C., Yue W., Shi L., Zhu X. and Lei F. (2010). Short-term effect of dietary selenium-enriched yeast on semen parameters, antioxidant status and Se concentration in goat seminal plasma. Anim. Feed Sci. Technol. 157, 104-108.
Silveira R.M.F., Silva B.E.B., de Vasconcelos A.M., Façanha D.A.E., Martins T.P., Rogério M.C.P. and Ferreira J. (2021). Does organic selenium supplement affect the thermoregulatory responses of dairy goats? Biol. Rhythm Res. 52, 869-881.
Spears J.W. (2003). Trace mineral bioavailability in ruminants. J. Nutr. 133, 1506-1509.
Suganthi R.U., Ghosh J., Malik P.K., Awachat V.B., Krishnamoorthy P. and Nongkhlaw S.S. (2019). Effect of dietary organic selenium (Se) on immune response, hepatic antioxidant status, selenoprotein gene expression and meat oxidative stability in lambs. J. Anim. Feed Sci. 28, 138-148.
Sun L.L., Gao S.T., Wang K., Xu J.C., Sanz-Fernandez M.V., Baumgard L.H. and Bu D.P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. J. Dairy Sci. 102, 311-319.
Surai P.F., Kochish I.I., Fisinin V.I. and Juniper D.T. (2019). Revisiting oxidative stress and the use of organic selenium in dairy cow nutrition. Animals. 9, 462-471.
Taheri Z., Karimi S., Mehrban H. and Moharrery A. (2018). Supplementation of different selenium sources during early lactation of native goats and their effects on nutrient digestibility, nitrogen and energy status. J. Appl. Anim. Res. 46, 64-68.
Tian X., Wang X., Li J., Luo Q., Ban C. and Lu Q. (2022). The effects of selenium on rumen fermentation parameters and microbial metagenome in goats. Fermentation. 8, 240-251.
Ullah H., Khan R.U., Tufarelli V. and Laudadio V. (2020). Selenium: An essential micronutrient for sustainable dairy cows production. Sustainability. 12, 10693-10706.
Wang D., Jia D., He R., Lian S., Wang J. and Wu R. (2021a). Association between serum selenium level and subclinical mastitis in dairy cattle. Biol. Trace Elem. Res. 199, 1389-1396.
Wang M., Li Y., Molenaar A., Li Q., Cao Y., Shen Y., Chen P., Yan J., Gao Y. and Li J. (2021b). Vitamin E and selenium supplementation synergistically alleviate the injury induced by hydrogen peroxide in bovine granulosa cells. Theriogenology. 170, 91-106.
Wang Z., Tan Y., Cui X., Chang S., Xiao X., Yan T., Wang H. and Hou F. (2019). Effect of different levels of selenium yeast on the antioxidant status, nutrient digestibility, selenium balances and nitrogen metabolism of Tibetan sheep in the Qinghai-Tibetan Plateau. Small Rumin. Res. 180, 63-69.
Xun W., Shi L., Yue W., Zhang C., Ren Y. and Liu Q. (2012). Effect of high-dose nano-selenium and selenium–yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol. Trace Elem. Res. 150, 130-136.
Yousef H., Abul-Ela A., Farag E., Awad Y., El-Keraby F. and Hassanin H. (1990). Effect of pre-partum selenium injection on reproductive and lactational performance and post-partum hormone profile in dairy cows. Pp. 445-454 in Proc. 4th Sci Congr. Fac. Vet. Med., Assiut, Egypt.
Zarbalizadeh-Saed A., Seifdavati J., Abdi-Benemar H., Salem A.Z.M., Barbabosa-Pliego A., Camacho-Diaz L.M., Fadayifar A. and Seyed-Sharifi R. (2020). Effect of slow-release pellets of selenium and iodine on performance and some blood metabolites of pregnant Moghani ewes and Their lambs. Biol. Trace Elem. Res. 195, 461-471.
Zhang L., Liu X.R., Liu J.Z., An X.P., Zhou Z.Q., Cao B.Y. and Song Y.X. (2018). Supplemented organic and inorganic selenium affects milk performance and selenium concentration in milk and tissues in the guanzhong dairy goat. Biol. Trace Elem. Res. 183, 254-260.
Zheng Y., Xie T., Li S., Wang W., Wang Y., Cao Z. and Yang H. (2021). Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: A review. Front. Immunol. 12, 820853.
Zhuang C., Liu G., Barkema H.W., Zhou M., Xu S., Rahman U.S., Liu Y., Kastelic J.P., Gao J. and Han B. (2020). Selenomethionine suppressed TLR4/NF-κB pathway by activating selenoprotein S to alleviate ESBL Escherichia coli-induced inflammation in bovine mammary epithelial cells and macrophages. Front Microbiol. 11, 1461-1470.