بهینهسازی پارامترهای مؤثر بر کارایی انرژی پنجرههای دوجداره در اقلیم گرم و خشک (مطالعه موردی: جبهه جنوبی ساختمان اداری در شهر تهران)
محورهای موضوعی : معماریپیمان پیله چی ها 1 , محسن بیات 2 , مریم قاسمی نسب 3
1 - استادیار، گروه معماری، موسسه آموزش عالی کوثر، قزوین، ایران
2 - دانشجوی کارشناسی ارشد، گروه معماری، موسسه آموزش عالی کوثر، قزوین، ایران.
3 - دانشجوی کارشناسی ارشد، گروه معماری، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.
کلید واژه: نوع شیشه, گاز بین دوجداره, فاصله هوایی, مصرف انرژی,
چکیده مقاله :
حدود 32درصد انرژی در دنیا در ساختمانها مصرف میشود. در میان راهکارهای متنوع برای کاهش این میزان مصرف، انتخاب انواع مناسب پنجرهها در پوسته ساختمانها میتواند نقش مهمی در بهرهوری انرژی آنها داشته باشد. به دلیل تابش مستمر خورشیدی به جبهه جنوبی، در این مطالعه، تأثیر پارامترهای مختلف پنجره دوجداره همچون نوع شیشه و همچنین گاز پرکننده بین دوجداره شیشه با چهار فاصله هوایی مختلف مورد بررسی قرار گرفته است. در این پژوهش بیان یافتهها و تحلیل آنها بهصورت قیاسی بوده که در قالب نمودار ارائه گردیده است. یافتههای پژوهش نشان میدهند که استفاده از شیشه انعکاسی با گاز زنون و فاصلة هوایی 8 میلیمتری حداکثر صرفهجویی انرژی را به میزان 99/14درصد در قیاس با مدل مرجع برای جبهه جنوب فراهم میکند. نتایج نشان میدهند انتخاب شیشه جاذب و کم گسیل حتی در بهترین شرایط انتخاب مناسبی برای شهر تهران نیست زیرا نسبت به مدل مرجع به ترتیب به میزان 53/0 و 79/3درصد باعث افزایش مصرف انرژی میشوند.
Approximately 32% of the world's energy is consumed in buildings. Among the various solutions to reduce this consumption, the selection of appropriate types of windows in the shell of buildings can play a vital role in their energy efficiency. With population growth and industry development, preventing energy waste and saving it has become one of the most important concerns of countries around the world. The city of Tehran is one of the most consumed cities in Iran due to its large size and population. Therefore, it is important to pay more attention to the construction method in this city. Among the building envelopes, the south envelope forms at least half of the main walls of the buildings due to continuous sunlight. Because of the continuous solar radiation to the southern envelope, in this study, the effect of different parameters of the double glazed window, such as the type of glass, as well as the filling gas between the double glazed windows with four different air distances has been investigated. Given that a significant part of energy consumption in office buildings is related to lighting, heating, and cooling space, it is important to choose the right type of window in reducing energy consumption. In this research, the findings and their analysis are deductive, which is presented in the form of a diagram. In the simulation of this research, double glazed windows with clear glass and an air gap of 3 mm filled with air have been selected, which is one of the most common and commonly used windows in Tehran. This window on the southern envelope is assumed to be the best and most common envelope for providing light and placing the window in the climate of Iran and Tehran. Then selected efficient components were applied as project variables in the simulation. The simulation model of this research was drawn in SketchUp software and entered into the Energy Plus engine in Open Studio software. Simulation and study of energy consumption of the research model have been done with Open Studio by Energy Plus Engine. Findings show that the use of reflective glass with xenon gas and an air gap of eight millimeters provides maximum energy savings of 14.99% compared to the reference model for the southern front. The results show that the choice of absorbent and low-emission glass is not a great choice for Tehran even in the best conditions, because compared to the reference model, they increase energy consumption by 0.53% and 3.79%, respectively. Therefore, the best window position in the south direction is related to the double glazed window with reflex glass, which has an air gap filled with xenon gas and has a 15% reduction in energy consumption compared to the reference window. This window has the most optimal energy efficiency and offers the use of this window for the city of Tehran. This study suggests the use of this type of window for the city of Tehran, especially office buildings that have a large amount of energy in the world.
1. ابراهیم پور، عبدالسلام؛ و محمد کاری، بهروز. (1390). روشی جدید برای طراحی پنجره باتوجهبه مصرف انرژی. مجله علمیپژوهشی مهندس مکانیک مدرس، 11 (1)، 77-88.
2. آب روش، مهدیه؛ محمد کاری، بهروز؛ و حیدری، شاهین. (1394). اندازهگیری خواص تشعشعی شیشههای پوششدار و برسی تأثیر آنها بر تلفات انرژی. ماهنامه علمیپژوهشی مهندس مکانیک مدرس، 15 (8)،402-410.
3. سازمان بهرهوری انرژی ایران (سابا). (1392)، بهینهسازی مصرف برق در تجهیزات اداری. پروژه مشارکت بسیج ادارات در مدیریت انرژی ساختمانهای اداری.
4. خداکرمی، جمال؛ و قبادی، پریسا. (1395). بهینهسازی مصرف انرژی در
یک ساختمان اداری مجهز به سیستم مدیریت هوشمند. پژوهشی مهندسی و مدیریت انرژی، 6 (2)، 12-23.
5. سرگزی، دانیال؛ عابدی، محمدحسین؛ و صیدزایی، نرگس. (1394)، بهینهسازی مصرف انرژی در ساختمان (مطالعه موردی: پنجره دوجداره)،
پژوهشهای نوین در عمران، معماری و شهرسازی، دومین کنفرانس بینالمللی در استانبول ترکیه، 24 اسفند، 1-14.
6. کارگر شریفآباد، هادی؛ و جلیلیان، مسعود. (1395). ردهبندی انرژی چند ساختمان مسکونی طبق استاندارد ملی در شهر قم و برسی اثر چند عامل مؤثر بر آن. ماهنامه علمیپژوهشی مهندس مکانیک مدرس، 16 (1)، 361-364.
7. کسمایی، مرتضی (1392)، اقلیم و معماری، محمد احمدینژاد. اصفهان: نشر خاک.
8. نمازیان، علی؛ و سپهری، یحیی. (1394). نقش شیشه (پنجره) در رفتار حرارتی ساختمان. مسکن و محیط روستایی،152، 84-100.
9. Arasteh D. (1995), Advances in window technology. In: Böer KW, editor. Advances in solar energy, an annual review of research and development. Colorado: American Solar Energy Society.
10. Baetens R., Jelle B. P., & Gustavsen A. (2010), Properties,requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review, SolEnergyMaterSolCells, 94, 87–105.
11. EnergyPlus, (2016), Retrieved October, 2016, from https://energyplus.net/weather.
12. Energy USD of. EnergyPlus Version 8.7 Documentation: Engineering Reference. 2017.
13. Hee W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., et al. (2015). The role of window glazing on daylighting and energy saving in buildings. Renew Sustain Energy Rev, 42, 323–343.
14. Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 96, 1-28.
15. Karlsson, J., & Roos, A. (2004). Evaluation of window energy rating models for different houses and European climates, Solar Energy. 76, 71-77.
16. Lechner, N. (2014). Heating, cooling, lighting: Sustainable design methods for architects. Alabama, the United States: John wiley & sons.
17. Mahdavinejad, M. J., Matoor, S., Feyzmand, N., &
Doroodgar, A. (2012). Horizontal distribution of illuminance with reference to window wall ratio (wwr) in office buildings in hot and dry climate, case of iran, tehran. In Applied Mechanics and Materials (Vol.110, pp.72-76). Trans Tech Publications Ltd.
18. Alghoul, S. K., & Hatab, A. M. (2016). Building Energy
Efficiency: Optimization of Building Envelope Using Grey-Based Taguchi. Journal of Multidisciplinary Engineering
Science and Technology, 3, 6192-7.
19. Alghoul, S. K., & Alrijabo, H. G. (2016). The Effect of Alternative Double Glazed Windows on Buildings Energy Consumption. International Journal of Engineering papers, 1, 18-24.
20. Fang, X. (2001). A study of the U-factor of a window with a cloth curtain. Applied Thermal Engineering, 21, 549-558.