ارزیابی ظرفیت استفاده دوباره از نیروگاه حرارتی بعثت تهران بر اساس مدل قابلیت استفاده مجدد انطباقی(ARP)
محورهای موضوعی : معماریمحمد پورابراهیمی 1 , سید رحمان اقبالی 2 , حسن غفوری فرد 3
1 - دانشجوی دکتری معماری، دانشکده معماری و شهرسازی، دانشگاه بینالمللی امام خمینی(ره)، قزوین، ایران.
2 - دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران
3 - استاد گروه الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران.
کلید واژه: ازکارافتادگی, استفاده مجدد انطباقی, عمر مفید, مدل قابلیت استفاده مجدد انطباقی(ARP), نیروگاه سوخت فسیلی,
چکیده مقاله :
بسیاری از ساختمانها در حالی تخریب میشوند که بخش قابلتوجهی از عمر کالبدی و سازهای آنها باقیمانده است. معمولاً چنین ساختمانهایی درنتیجه عوامل مختلفی، مانند عدم توانایی در برآوردن الزامات و انتظارات جدید، پیش از پایان عمر کالبدی خود ازکارافتاده و متروک میشوند. در چنین شرایطی استفاده مجدد انطباقیمیتواند مزایای قابلتوجهی را در قیاس با تخریب و ساخت بنای جدید داشته باشد. اما سؤال اینجاست که آیا همه ساختمانها برای استفاده دوباره مناسب هستند؟ به نظر میرسد نیروگاههای سوخت فسیلی از بناهایی هستند که ویژگیهای جالبتوجهی، ازجمله به لحاظ ظرفیتهای سازهای و کالبدی، جهت استفاده مجدد دارند و اینکه تخریب آنها ضمن تحمیل هزینههای بسیار بالا، سبب تولید پسماندهای زیاد ساختمانی میشود. جهت رسیدن به نتایج کمی و قابلاتکا، به ارزیابی ظرفیت استفاده دوباره نیروگاه حرارتی بعثت تهران براساس مدل قابلیت استفاده مجدد انطباقی(ARP)پرداختهشده و نتایج حاصله موردبررسی قرار گرفتهاست.
Many buildings experience demolition while a significant part of their physical and structural life is still remain. Such buildings usually became abandoned before the end of their physical life as a result of various factors, such as the inability to meet the new requirements and expectations. In such circumstances, adaptive reuse can have significant benefits compared to demolish and new construction. Demolition has some disadvantages, including waste of building embodied energy, building waste generation, use of new sources and greenhouse gas emissions as a result of new construction. Unlike demolition, adaptive reuse approach avoids the lavish process of demolition and new construction. Adaptive reuse approach can lead to materials waste reduction, maximum use of materials, embodied energy saving, time saving, economic saving, avoiding of overuse of resources and lands and preserve them for future generations. But the reuse of existing buildings need appropriate study and evaluating. Adaptive Reuse Potential (ARP) model through measuring building reuse potential and determining the best time to intervene for the reuse of building turns to an effective tool for decision-making in this area. Adaptive reuse potential (ARP) Model, which was introduced in 2007 by Professor Craig Langston, has a generic application to all countries. Adaptive reuse potential model (ARP) needs data such as the building physical life, current age of the building and building predicted useful life. Actually the useful life of a building is different from its physical life and there maybe buildings losing their utility because of obsolescence, years before the end of their physical life. This model uses 7 types of obsolescence includes, physical, economic, functional, technical, social, legal and political. A scale of 0–20% is used to assess obsolescence vulnerability, where 0% means it is effectively immune and 20% means it is significantly exposed. Adaptive reuse potential model (ARP) output is some indexes as percentage. ARP index more than 50% indicates high adaptive reuse potential, 20% to 50% indicates medium potential for reuse and ARP index below 20% indicates low potential for adaptive reuse. On the one hand, Fossil fuel power plants have valuable features for adaptive reuse, including large open internal spaces, solid structures, large and valuable tracts of land, existing infrastructure, interesting architecture features, historic preservation interest, and landmarks for a new generation. On the other hand, due to large scale of fossil fuel power plants, their demolition can cost a lot and cause waste generation and waste of embodied energy. New construction also involves the use of significant resources and land. Also given to greenhouse gas emissions by these power plants, determination of the useful life, potential and the best time for reuse are very important. Adaptive reuse potential (ARP) model is a useful tool in this regard. This paper assessed the adaptive reuse potential of Tehran Beasat power plant, based on Adaptive reuse potential (ARP) model. So, the Adaptive reuse potential (ARP) model has been studied through the practical application and meanwhile calculating the reuse potential of the power plant the obtained results are discussed and analyzed.
1. سازمان مدیریت و برنامهریزی کشور، (1395). اطلاعات پروانههای ساختمانی صادرشده توسط شهرداریهای کشور. تهران: مرکز آمار ایران.
2. لطفی, سهند؛ مهسا شعله؛ مهسا صبوری و خلیل حاجی پور، (۱۳۹۳). معرفی مدل ARP و برآورد قابلیت استفاده دوباره از بناهای موجود و ذخیرههای ساختمانی در توسعهی پایدار شهری. ششمین همایش مقررات ملی ساختمان، اسفندماه 6-7، شیراز: دبیرخانه دائمی مباحث مقررات ملی ساختمان.
3. Ashworth, A. (2004). Cost Studies of Buildings. Fourth Edition. Harlo: Pearson Education.
4. Ball, R. (1999). Developers, regeneration and sustainability issues in the reuse of vacant industrial buildings. Building Research & Information, 27(3), 140-148.
5. Baum, A. (1991). Property Investment Depreciation and Obsolescence. London: Routledge.
6. Bullen, P. A. (2004). Sustainable adaptive reuse of the existing building stock in Western Australia in Khosrowshahi, F (Ed.). 20th Annual ARCOM Conference, 1-3 September, (pp. 1387-97). Edinburgh: Association of Researchers in Construction Management.
7. Butt, T. E., Camilleri, M., Paul, P., & Jones, K. G. (2015). Obsolescence types and the built environment–definitions and implications. International Journal of Environment and Sustainable Development, 14(1), 20-39.
8. Cantell, S. F. (2005). The Adaptive Reuse of Historic Industrial Buildings: Regulation Barriers,
Best Practices and Case Studies. Virginia Polytechnic Institute and State University, Virginia.
9. Cho, M., & Shin, S. (2014). Conservation or economization? Industrial heritage conservation in Incheon, Korea. Habitat International, 41, 69-76..
10. Conejos, S. (2013). Designing for Future Building Adaptive Reuse. Bond University, Gold Coast.
11. Conejos, S., Langston, C., & Smith, J., (2012). Designing for future buildings: Adaptive reuse as a strategy for carbon neutral cities. The international journal of climate change: Impacts and responses, 3 (2), 33-52.
12. Conejos, S., Langston, C., & Smith, J. (2014). Designing for better building adaptability: A comparison of adaptSTAR and ARP models. Habitat International, 41, 85-91.
13. Conejos, S., Langston, C., & Smith, J. (2011). Improving the implementation of adaptive reuse strategies for historic buildings. Le Vie dei Mercanti S.A.V.E. HERITAGE: Safeguard of Architectural, Visual, Environmental Heritage. Naples, Italy.
14. Conejos, S., Langston, C., & Smith, J. (2015). Enhancing sustainability through designing for adaptive reuse from the outset. Facilities, 33(9/10), 531-552.
15. Elsorady, D.A. (2013). Assessment of the compatibility of new uses for heritage buildings: The example of Alexandria National Museum, Alexandria, Egypt. Journal of Cultural Heritage, 15( 5), 511-521.
16. Flanagan, R., Norman, G., Meadows, J., & Robinson, G., (1989). Life Cycle Costing Theory and Practice. Boston: BSP Professional Books.
17. Hsu, Y. H., & Juan, Y. K. (2016). ANN-based decision model for the reuse of vacant buildings in urban areas. International Journal of Strategic Property Management, 20(1), 31-43.
18. Jianguo, W., & Nan, J. (2007). Conservation and adaptive-reuse of historical industrial building in China in the post-industrial era. Front. Archit. Civ. Eng. China, 1(4), 474–480
19. Kintrea, K. (2007). Housing aspirations and obsolescence: understanding the relationship. Journal of Housing and the Built Environment, 22( 4), 321–338.
20. Langston, C., & Shen, L. Y. (2007). Application of the adaptive reuse potential model in Hong Kong: a case study of Lui Seng Chun. International Journal of Strategic Property Management, 11(4), 193-207.
21. Langston, C., Wong, F. K., Hui, E. C., & Shen, L. Y. (2008). Strategic assessment of building adaptive reuse opportunities in Hong Kong. Building and Environment, 43(10), 1709-1718.
22. Langston, C. (2011a). On Archetypes and Building Adaptive Reuse, PRRES2011 Conference, January 16-19, Gold Coast: Bond University.
23. Langston, C., Yung, E. H. K., & Chan, E. H. W. (2013). The application of ARP modelling to adaptive reuse projects in Hong Kong. Habitat International, 40, 233-243.
24. Langston, C. A. (2008). The sustainability implications of building adaptive reuse. CRIOCM International Research Symposium on Advancement of Construction Management and Real Estate, 31st Oct.-3rd Nov Beijing: Hong Kong Polytechnic University.
25. Langston, C. (2011b). Estimating the useful life of buildings, 36th Australasian University Building Educators Association (AUBEA) Conference, April 27-29, Gold Coast: Bond University.
26. Langston, C. (2011c). Green adaptive reuse: issues and strategies for the built environment. In Modeling Risk Management in Sustainable Construction (pp. 199-209). Springer, Berlin, Heidelberg.
27. Langston, C. (2012). Validation of the adaptive reuse potential (ARP) model using iconCUR. Facilities, 30 (3-4), 105-123.
28. Mansfield, J. R., & Pinder J. A. (2008). Economic and functional obsolescence: Their characteristics and impacts on valuation practice. Property Management, 26(3), 191-206.
29. Morano, P., Locurciob, M. & Tajania, F. (2016). Cultural Heritage Valorization: An application of AHP for the Choice of the Highest and Best Use. Procedia - Social and Behavioral Sciences, 223, 952-959.
30. Nutt, B., Walker, B., Holliday, S., and Sears, D. (1976). Obsolescence in housing: theory and application. United Kingdom: Ashgate Publishing.
31. Pinder, J., & Wilkinson S. J. (2000). Measuring the gap: A user based study of building obsolescence in office property. RICS Cutting Edge Conference. September 6-8, London: University of Reading.
32. Shen L.y., & Langston, C. (2010). Adaptive reuse potential an examination of differences between urban and non-urban projects. Facilities, 28( ½) , 6 – 16.
33. Song, Z. (2007). Conservation and adaptive reuse of industrial heritage in Shanghai. Front. Archit. Civ. Eng. China, 1(4), 481–490
34. Rodi, W. N. W., Hwa, T. K., said, A. S., Mahamood, N. M., Abdullah, M. I., & Abd Rasam, A. R., (2015), Obsolescence of Green Office Building: A Literature Review. Procedia Economics and Finance, 31, 651– 660.
35. Tan, Y., Shen, L. Y., & Langston, C. (2014). A fuzzy approach for adaptive reuse selection of industrial buildings in Hong Kong. International Journal of Strategic Property Management, 18(1), 66-76.
36. Wang H.J., & Zeng Z. T. (2010). A multi-objective decision-making process for reuse selection of historic buildings. Expert Systems with Applications, 37, 1241–1249.
37. Wilkinson, S.J., Remøy, H., & Langston, C. (2014). Sustainable Building Adaptation: Innovations in Decision-Making. First Edition, Southern Gate: John Wiley & Sons.
38. Yung, E. H. K., & Chan, E.H.W. (2012). Implementation challenges to the adaptive reuse of heritage buildings: Towards the goals of sustainable, low carbon cities. Habitat International, 36(3), 352-361.
39. Yung, E. H. K., Langston, C., & Chan, E.H.W. (2014). Adaptive reuse of traditional Chinese shophouses in government-led urban renewal projects in Hong Kong, Cities, 39, 87–98.
40. Architectsjournal, (2018). Retrieved January, 2018, from https://www.architectsjournal.co.uk
41. Besatpower, (2018). Retrieved January, 2018, from http://www.besatpower.ir/node/1
42. Fa.wikipedia, (2018). Retrieved January, 2018, from https://fa.wikipedia.org/wiki/
43. Idaaf, (2018). Retrieved January, 2018, from http://idaaf.com/tate-modern-switch-house-by-herzog-de-meuron/
44. Pinterest, (2018). Retrieved January, 2018, from https://www.pinterest.com/dominicrodohan/the-tate-modern/