پایش خشکسالی کشاورزی با استفاده از شاخص سنجش از دوری وضعیت تبخیر تعرق در حوزه آبخیز جراحی
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطی
مائده بهی فر
1
,
عطاالله عبدالهی
2
*
,
مجید کیاورز مقدم
3
,
قاسم عزیزی
4
1 - سنجش از دور، دانشکده جغرافیا، داشگاه تهران، تهران، ایران. /گروه سنجش از دور، پژوهشگاه فضایی ایران
2 - دانشگاه تهران
3 - استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران
4 - دانشیار آب وهواشناسی،دانشگاه تهران،تهران،ایران
کلید واژه: خشکسالی, تبخیرتعرق, سنجش از دور, شاخصهای خشکسالی,
چکیده مقاله :
خشکسالی از مهمترین مخاطرات طبیعی کشور است که اثرات مخرب زیستمحیطی و اقتصادی فراوانی دارد. عوامل مختلفی بر بروز خشکسالی تأثیر دارند و شاخصهای متنوعی برای پایش آن ارائهشده است. تاکنون تحقیقات اندکی به استفاده از دادههای تبخیر تعرق ماهوارهای برای مطالعه خشکسالی پرداختهاند. در این تحقیق از شاخصهای سنجشازدوری وضعیت پوشش گیاهی، وضعیت دما و وضعیت تبخیر تعرق برای مطالعه خشکسالی در حوزه آبخیز جراحی و زهره استفاده شد. شاخصهای سنجشازدوری خشکسالی بهصورت ماهانه با استفاده از محصولات سنجنده مادیس در سالهای 1378 تا 1396 محاسبه شدند. برای ارزیابی شاخصهای سنجشازدوری از شاخص ایستگاهی بارش استانداردشده ششماهه استفادهشده است. نتایج تحقیق نشان داد شاخص وضعیت تبخیر تعرق بالاترین همبستگی را با شاخص بارش استانداردشده ششماهه داشت و بهعنوان مناسبترین شاخص در نظر گرفته شد. مقدار ضریب همبستگی این شاخص 57/0- و مقدار ریشه میانگین مربعات خطا معادل 47/0 بوده است. با استفاده از شاخصهای سنجشازدوری، نقشه درجات شدت خشکسالی در شش کلاس خشکسالی فرین، شدید، متوسط، خفیف، نزدیک به نرمال و بدون خشکسالی برای سالهای 1387، 1388 و 1395 که منطقه مطالعه تحت تأثیر خشکسالی قرار داشت، تهیه شد. نتایج ارزیابی مکانی نشان داد، بخش میانی حوزه که دارای زیستگاههای حفاظتشده با اهمیت اکولوژیک است، آسیبپذیرترین بخش حوزه حین خشکسالی بوده است و در بازه مطالعات، بیش از 10 ماه خشکسالی فرین را تجربه کرده است. در دوره موردبررسی، بخش ساحلی کمترین شدت خشکسالی را شاهد بوده است. بااینوجود، طی سالهای مختلف پهنه تالابی حوزه که جزو زیستگاههای حفاظتشده آبی محسوب میگردد، با کاهش سطح روبرو شده است. نتایج تحقیق نشان داد، در مقایسه با سایر شاخصها، استفاده از دادههای تبخیر تعرق ماهوارهای میتواند ابزار مناسبی برای پایش خشکسالی در مناطق گرم و با پوشش گیاهی پراکنده نظیر ایران فراهم نماید.
Drought is one of the most important natural hazards in Iran that has many destructive environmental and economic effects. Drought is affected by various factors, and different indices have been developed to monitor it. Drought studies have been performed using temperature and vegetation data, but few studies have used satellite evapotranspiration data. In this research, vegetation condition index, temperature condition index, and evapotranspiration condition index have been used to study drought in Jarahi and Zohreh catchments. For this purpose, drought indices have been calculated on a monthly basis using MODIS satellite products from the 2000 to 2017 period. The six-month Standardized Precipitation Index was used to evaluate the remote sensing-based drought indices. The results showed that the evapotranspiration condition Index had the highest correlation with the six-month SPI index and was considered the most appropriate index to study the drought. The correlation of ETCI with SPI was equal to -0.57 and the RMSE was 0.47. A drought severity map was prepared using remote sensing indices to depict six classes of drought severity including severe drought, moderate drought, mild drought, near normal, and without drought for 2008, 2009, and 2016, when the study area was suffering from drought. The results of the spatial assessment showed that the central part of the basin which contains ecologically important protected areas was the most vulnerable part during dry years, and during the study period, it has experienced over 10 months of severe drought. In this period, the coastal part had the lowest drought intensities. However, during different years, the wetland area of the basin, which is one of the protected water ecosystems, has decreased. The results showed that compared to other indices, the satellite-based evapotranspiration data can provide a good tool for monitoring drought in hot areas with sparse vegetation such as Iran.
1. Ali, S., Tong, D., Xu, Z. T., Henchiri, M., Wilson, K., Siqi, S., & Zhang, J. (2019). Characterization of drought monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001–2017. Environmental Science and Pollution Research, 26(32), 33568-33581.
2. Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. (2011). Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate, 24(8), 2025-2044.
3. Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. 2008. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16-46.
4. Chang, S., Chen, H., Wu, B., Nasanbat, E., Yan, N., & Davdai, B. 2021. A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sensing, 13(3), 414.
5. Damavandi, A, Rahimi, M, Yazdani, M, Noroozi, A. 2016. Spatial Monitoring of Agricultural Drought through Time Series of NDVI and LST indices of MODIS data (Case study: Markazi Province). Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(99): 115-126. (In Persian).
6. Ebrahimikhusfi, Z, Khosroshahi, M, Naeimi, M, Zandifar, S. 2019. Evaluating and monitoring of moisture variations in Meyghan wetland using the remote sensing technique and the relation to the meteorological drought indices. Journal of RS & GIS for Natural Resources, 10(2): 1-14. (In Persian).
7. Gouveia, C. M., Trigo, R. M., Beguería, S., & Vicente-Serrano, S. M. (2017). Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, 15-27.
8. Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. 2007. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical research letters, 34(6).
9. Han, Y., Li, Z., Huang, C., Zhou, Y., Zong, S., Hao, T., ... & Yao, H. 2020. Monitoring droughts in the Greater Changbai Mountains using multiple remote sensing-based drought indices. Remote Sensing, 12(3), 530.
10. Heim Jr, R. R. 2002. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.
11. Ionita, M., Scholz, P., & Chelcea, S. 2016. Assessment of droughts in Romania using the Standardized Precipitation Index. Natural Hazards, 81(3), 1483-1498.
12. Jiao, W., Tian, C., Chang, Q., Novick, K. A., & Wang, L. 2019. A new multi-sensor integrated index for drought monitoring. Agricultural and forest meteorology, 268, 74-85.
13. Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Agam, N., Khudulmur, S., & Tucker, C. J. (2006). Comments on the use of the vegetation health index over Mongolia. International Journal of Remote Sensing, 27(10), 2017-2024.
14. Kogan, F.N. 1995. Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. Bulletin of the American Meteorological Society, 76, 655–668
15. Kogan, F.N. 1995. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91-100.
16. Lu, X., Wang, L., Pan, M., Kaseke, K. F., & Li, B. 2016. A multi-scale analysis of Namibian rainfall over the recent decade–comparing TMPA satellite estimates and ground observations. Journal of Hydrology: Regional Studies, 8, 59-68.
17. McKee, T. B., Doesken, N. J., & Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
18. Mishra, A. K., & Singh, V. P. 2010. A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.
19. Mishra, A. K., Desai, V. R., & Singh, V. P. 2007. Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering, 12(6), 626-638.
20. Mohammadi, J, Vafaeinezhad, A, Behzadi, S, Aghamohammadi, H, Hemmasi, A. 2022. The effect of kernel optimization in modeling drought phenomenon using computational intelligence (Case study: Sanandaj). Journal of RS and GIS for Natural Resources, (), -. (In Persian).
21. Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and forest meteorology, 133(1-4), 69-88.
22. Navabi, N, Moghaddasi, M, Gangi,N,. 2021, Assessment of Agricultural Drought Monitoring Using Various Indices based on Ground-based and Remote Sensing Data (Case Study:Lake Urima Basin), Journal of Watershed Engineering and Management, Volume 13, Issue 1, 2021, Pages 1-12, (InPersion).
23. Prodhan, F. A., Zhang, J., Yao, F., Shi, L., Pangali Sharma, T. P., Zhang, D., ... & Mohana, H. P. 2021. Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sensing, 13(9), 1715.
24. Quiring, S. M., & Ganesh, S. 2010. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150(3), 330-339.
25. Shabani, M. 2022. Evaluation of indices based on remote sensing in drought monitoring of Neyriz city. Journal of RS and GIS for Natural Resources, (), -. (In Persian).
26. Shahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B. A., Mustafa, F., Arshad, M., ... & Iqbal, R. 2021. Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing, 13(11), 2059.
27. Solaimani, K, Darvishi, Sh, Shokrian, F. 2019. Analysis of agricultural drought using remote sensing indices (Case study: Marivan city). Journal of RS & GIS for Natural Resources, 10(2): 15-33. (In Persian).
28. Svaboda, M., Hayes. M., Wood, D., 2012. Standard Precipitation Index User Guide. World Meteorological Organization.
29. Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
30. Wei, W., Zhang, J., Zhou, L., Xie, B., Zhou, J., & Li, C. 2021. Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environmental Science and Pollution Research, 28(16), 20408-20425.
31. Wilhite, D. A., Svoboda, M. D., & Hayes, M. J. 2007. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water resources management, 21(5), 763-774.
32. Wilhite, D. A. 2000. Preparing for drought: a methodology. Published in Drought: A Global Assessment, Vol. II, edited by Donald A. Wilhite, chap. 35, pp. 89–104 (London: Routledge, 2000).
33. Winkler, K., Gessner, U., & Hochschild, V. 2017. Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sensing, 9(8), 831.
34. World Meteorological Organization (WMO). 2012. Guidelines on Ensemble Prediction Systems and Forecasting; World Meteorological Organization: Geneva, Switzerland, 2012.
35. Yoon, D. H., Nam, W. H., Lee, H. J., Hong, E. M., Feng, S., Wardlow, B. D., ... & Kim, D. E. (2020). Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing, 12(3), 444.
36. Zandifar,S, Fijani, E, Naeimi,M, Khosroshahi,M, 2020, Spatiotemporal variations of groundwater drought indices, Case study: Zohreh- Jarrahi watershed, journal of Hydrogeology, 4( 2): 108-130, (InPersion).
37. Zhang, Y., Liu, X., Jiao, W., Zeng, X., Xing, X., Zhang, L., ... & Hong, Y. 2021. Drought monitoring based on a new combined remote sensing index across the transitional area between humid and arid regions in China. Atmospheric Research, 264, 105850.
38. Zhang, Z., Xu, W., Shi, Z., & Qin, Q. 2021. Establishment of a Comprehensive Drought Monitoring Index Based on Multisource Remote Sensing Data and Agricultural Drought Monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2113-2126.
39. Zhang, L., Jiao, W., Zhang, H., Huang, C., & Tong, Q. 2017. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote sensing of environment, 190, 96-106.
40. Zhong, S., Sun, Z., & Di, L. (2021). Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecological Indicators, 127, 107767.