ارزیابی دقت دادههای پهپاد در برآورد میزان خشکیدگی درختان شمشاد (مطالعه موردی: پارک جنگلی سیسنگان- استان مازندران)
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداریمحمدرضا کارگر 1 * , یونس بابایی 2 , امیراسلام بنیاد 3
1 - کارشناسی ارشد سنجشازدور، اداره کل منابع طبیعی و آبخیزداری استان فارس، شیراز، ایران
2 - کارشناسی ارشد جنگلداری، اداره کل منابع طبیعی و آبخیزداری استان تهران، تهران، ایران
3 - استاد، گروه علوم و مهندسی جنگل، دانشکده منابع طبیعی صومعهسرا، دانشگاه گیلان، گیلان، ایران
کلید واژه: خشکیدگی, شمشاد, پارک جنگلی سیسنگان, پهپاد, شبکه عصبی مصنوعی, طبقه بندی,
چکیده مقاله :
پیشینه و هدف پارک جنگلی سیسنگان یکی از زیستگاه های مهم شمشاد خزری در کشور بهحساب می آید. اما در چند سال اخیر به دلیل بیماری خشکیدگی دچار بحران شده و بسیاری از پایه های شمشاد از بین رفته اند. پایش و مدیریت این منطقه می تواند در اموری مانند کنترل، حفاظت و حمایت این منطقه مؤثر باشد. به دلیل مساحت زیاد پایه های از بین رفته، امکان برآورد مساحت بهصورت دقیق با استفاده از داده های موجود وجود ندارد. اندازه گیری های دستی نیز کاری بسیار زمانبر و طاقت فرساست. این امر مستلزم این است تا راهی بیابیم که بهصورت دقیق و خودکار این فرآیند را انجام دهد. پهپادها با استفاده از سنجنده های بسیاری دقیقی (تفکیک مکانی) که دارند، این امکان را فراهم آورده اند. روش های مختلف طبقه بندی نیز از راهکارهایی هستند که می توان بهمنظور تفکیک خودکار درختان خشکیده از درختان سبز به کار گرفت. هدف از این پژوهش، ارزیابی توانایی داده های پهپادهای ارزان قیمت با سنجنده های معمولی در آشکارسازی و پهنه بندی مناطق دچار خشکیدگی اثبات گردد و با توجه به اینکه هزینه پهپادهایی با سنجنده های چند طیفی (باند لبه قرمز و مادون قرمز نزدیک) بسیار زیاد است، بتوان این هزینه را کاهش داد.مواد و روش هاپارک جنگلی سیسنگان در 30 کیلومتری شرق شهرستان نوشهر استان مازندران در عرض جغرافیایی "30 ́ 33 ̊ 36 تا "30 ́ 35 ̊ 36 و طول جغرافیایی "00 ́ 47 ̊ 51 تا "30 ́ 49 ̊ 51 قرارگرفته است. این پارک علاوه بر نقش تفرجی که دارد بسیاری از گونه های گیاهی مهم کشور در آن رشد یافته اند. ازجمله مهمترین این گونه ها می توان به شمشاد خزری اشاره کرد. پهپادی که در این پژوهش استفاده گردید از نوع پهپادهای عمودپرواز است. دوربینی که بر روی این وسیله تعبیه شده است قابلیت ثبت تصاویر 20 مگاپیکسلی را دارد. عملیات تصویربرداری در تاریخ هشتم آذرماه 1396، ساعت 10 صبح انجام پذیرفت که مدتزمان آن 45 دقیقه طول کشید. برای نمونه برداری میدانی از منطقه موردمطالعه بازدید به عمل آمد و نقاط مختلف آن ازنظر تراکم پایه های خشکهدار شمشاد و درختان سبز مشخص گردید. سپس سه قطعهنمونه دایره ای با شعاع 60 متر و مساحت 1.13 هکتار در منطقه طراحی گردید و تراکم پایه های خشکه دار شمشاد و پایه های زنده و سبز در آن ها مشخص گردید. سپس در هر قطعه نمونه در نقاطی که پایه های شمشاد قرار داشتند، 50 نقطه تعلیمی و همچنین در نقاطی که پایه های زنده، پوشش علفی کف و تمشک نیز قرار داشتند، 50 نقطه ثبت گردید. در این پژوهش بهمنظور بررسی میزان دقت تصاویر پهپاد در شناسایی و طبقه بندی مناطق پوشیده از خشکه دار های شمشاد، کوچکترین پایه های خشکهدار شمشاد که کمترین وسعت تاج را داشتند نیز ثبت گردید. به دلیل اینکه تصاویر پهپاد احتیاج به تصحیحات هندسی دارند، ابتدا ازنظر هندسی و موقعیت جغرافیایی تصحیح شدند. بهمنظور انجام فرآیند طبقه بندی، وارد نرم افزار ENVI شدند. در هر قطعهنمونه 100 نقطه ثبت گردیده بود که 75 عدد از آن ها برای انجام فرآیند طبقه بندی نظارتشده و 25 عدد از آن ها نیز برای ارزیابی صحت طبقه بندی استفاده گردید. برای طبقه بندی این تصاویر از سه الگوریتم طبقه بندی نظارت شده شبکه عصبی مصنوعی، حداکثر احتمال و حداقل فاصله به کاربرده شد. در پایان پس از انجام هرکدام از مراحل طبقه بندی، از فیلتر پایین گذر با ابعاد پنجره 3 در 3 پیکسل، برای هموارسازی تصاویر استفاده شد. برای ارزیابی نتایج نیز شاخص های ضریب کاپا و دقت کلی به کار گرفته شد.نتایج و بحث در این تعداد قطعهنمونه، 579 پایه اندازه گیری گردید. شمشاد با اختلاف زیادی، بیشترین فراوانی را در منطقه به خود اختصاص داد. پسازآن ممرز و انجیلی و بلوط به ترتیب دررتبه های بعدی قرار دارند. از نتایج حاصل مشخص شد که الگوریتم شبکه عصبی مصنوعی بهترین نتایج را نسبت به دو الگوریتم دیگر داشته است. اما نتایج شبکه عصبی مصنوعی نیز با توجه به شرایط قطعهنمونه دارای نوساناتی است. این الگوریتم با دقت کلی 97.47 درصد و ضریب کاپا 0.94 بهترین نتایج را در تفکیک و آشکارسازی خشکه دار های شمشاد در قطعهنمونه با غلبه خشکه دارهای شمشاد داشتند. پس از الگوریتم شبکه عصبی مصنوعی، الگوریتم بیشینه شباهت نتایج مطلوب تری را در تفکیک پایه های خشکهدار شمشاد از خود نشان داد. الگوریتم کمترین فاصله نتایج مطلوبی از خود نشان داد، اما میزان دقت آن بهاندازه دو الگوریتم قبل نبود. هر سه الگوریتم در تفکیک پایه ها در قطعهنمونه با غلبه پایه های زنده نتایج ضعیف تری را نسبت به دو قطعهنمونه دیگر از خود نشان دادند. قطعهنمونه با غلبه پایه های زنده و سبز در مقایسه با دو قطعهنمونه دیگر پدیدهها و عوارض بیشتری را در خود جایداده است و از نظر بافت تصویر نیز در مقایسه با دو قطعه نمونه دیگر تفاوت های زیاد و محسوسی دارد. در این قطعه نمونه علاوه بر وجود پایه های سبز و خشکه دارهای شمشاد، پوشش علفی کف و توده های تمشک نیز به چشم می خورد. در این پژوهش نتایج طبقه بندی و آشکارسازی خشکه دارهای شمشاد با استفاده از الگوریتم شبکه عصبی مصنوعی بسیار بهتر از الگوریتم های بیشینه شباهت و کمترین فاصله بود. ازجمله دلایل بهتر بودن نتایج الگوریتم شبکه عصبی مصنوعی می توان به غیرخطی بودن و ناپارامتریک بودن آن اشاره کرد. اما در طبقه بندی بهوسیله الگوریتم های سنتی مانند روش های آماری، به دلیل اینکه انعطاف پذیری کمتری دارند، دقت پایینتری داشته. انواع پارامتریک روش های سنتی مانند الگوریتم بیشینه شباهت، به خاطر وابستگی به آمار گوسی، درصورتیکه داده ها نرمال نباشند نمی تواند دقت مطلوبی در طبقه بندی و تفکیک طبقات از یکدیگر داشته باشد. در الگوریتم های سنتی مانند الگوریتم های بیشینه شباهت و کمترین فاصله، داده های آموزشی نقش حیاتی دارند. در این روش ها فرض بر این است که توزیع در داخل نمونه های آموزشی باید نرمال باشد، بهطوریکه اگر نتوان این شرط را محیا نمود، دقت طبقه بندی بهشدت کاهش می یابد. درحالیکه روش های شبکه عصبی مصنوعی بر اساس ویژگی ها و ساختار خود داده ها عمل می کنند.نتیجه گیری نتایج حاصل از این پژوهش نشان داد که می توان با استفاده از داده ها و تصاویر معمولی یک پهپاد ارزان قیمت به بررسی وضعیت خشکیدگی درختان بعد از فوران بیماری و تعیین مساحت آن پرداخت. برخلاف هزینه های زیادی که بهمنظور خرید سنجنده های گران قیمت به منظور پایش وضعیت پوشش گیاهی صورت می گیرد، می توان از این شیوه های ارائهشده در این مقاله، با هزینه های بسیار کمتری اقدام کرد. این روش می تواند در تعیین میزان سطح پوشش های خشکیده کمک شایانی به نهاد های زیربط کند.
Background and ObjectiveSisangan forest park is one of the important habitats of Buxus Hyrcana in Iran. Unfortunately, the park has suffered from dieback in recent years, and many Box trees have been destroyed. Monitoring and management of this zone can be effective in controlling, protecting, and supporting it. However, due to the destruction of Box trees, on a large scale, it is not possible to accurately estimate the area using the available data. On the other hand, manual measurements are also very time-consuming and tedious. Therefore, a way must be found to do this process accurately and automatically. Unmanned aerial vehicles (UAV) have made this possible by using highly accurate sensors (spatial resolution). Another solution that can be used to automatically separate dieback trees from green trees is to use different classification methods. The aim of this study is to prove the ability of low-cost UAV data with conventional sensors to detect and zoning areas that have suffered Dieback. Since the cost of UAVs with multispectral sensors (red edge band and near infrared) is very high, it should be possible to reduce this cost. Since the cost of UAV with multispectral sensors (red-edge and near-infrared band) is very high, it should be possible to reduce this cost. Materials and Methods Sisangan Forest Park has located 30km to the east of Nowshahr County, Mazandaran province, at latitude 36º33′30″ to 36º35′30″ N, and longitude 51º47′ to 51º49′30″E. This park is both a tourist destination and many important plant species of the country grow in it. One of the most important of these species is the Buxus Hyrcana. But unfortunately, in recent years they have become snag due to pests and insect infestations. Multirotor UAVs have been used in this research. The camera installed on this device is capable of capturing 20 megapixel images. Imaging operations were performed on December 28, 2017, at 10:00 AM, which lasted 45 minutes. The study area was visited for field sampling and its different points were identified in terms of density of snags and preserved Buxus Hyrcana. Then, three circular pieces with a radius of 60 meters and an area of 1.13 hectares were designed in the zone and the density of snag stands and preserved Buxus Hyrcana stands were determined in these three samples. In each plot, 50 training points were recorded in the places where the Buxus Hyrcana stands were located and also 50 points were recorded in the places where the preserved Buxus Hyrcana stands, floor grass cover, and blackberry was located. In this study, in order to evaluate the accuracy of UAV images in identifying and classifying zones covered with Dieback, the smallest Dieback stands with the smallest canopy width were also recorded. Because UAV images require geometric corrections, they were first corrected geometrically and geographically. They were classified with ENVI software. According to the above explanations, 100 points were recorded in each sample plot, 75 of which were monitored for the classification process and 25 of which were used to evaluate the classification accuracy. Three monitored artificial neural network classification algorithms, maximum likelihood and minimum distance were used to classify these images. Finally, after performing each of the classification steps, a low-pass filter with a size of 3 by 3 pixels was used for smoothing the images. Kappa coefficients and overall accuracy indices were also used to evaluate the results. Results and Discussion In this number of sample plots, 579 stands were measured. Buxus Hyrcana was by far the most frequent in the zone. European hornbeam, Parrotia persica, and Oak were in the next ranks, respectively. The results showed that the artificial neural network algorithm had the best results compared to the other two algorithms. But the results of the artificial neural network also fluctuate according to the condition of the sample piece. This algorithm with an overall accuracy of 97.47% and a kappa coefficient of 0.94 had the best results in the separation and detection of the Buxus Hyrcana snags in the sample plot with the dominance of Buxus Hyrcana snags. After the artificial neural network algorithm, the maximum likelihood algorithm showed more favorable results in separating the Buxus Hyrcana snag stands. The minimum distance algorithm showed good results, but it was not as accurate as of the previous two algorithms. All three algorithms showed poorer results in separating the bases in the sample plot with the dominance of live bases in the sample than the other two sample plots. The sample piece with the predominance of live and green bases compared to the other two sample pieces has more phenomena and effects and in terms of image texture, there are many significant differences compared to the other two sample pieces. All three algorithms showed poorer results in separating the stands in the sample plot by dominance the preserved stands in the sample than the other two sample plots. The sample plot with the predominance of preserved stands compared to the other two sample plots has more phenomena and in terms of image texture compared to the other two sample plots has a lot of significant differences. In this sample plot, in addition to the presence of preserved and snag stands, grass cover and blackberry accessions can also be seen. In this study, the results of classification and detection of Buxus Hyrcana snags using an artificial neural network algorithm were much better than the maximum likelihood and minimum distance algorithms. One of the reasons for the better results of the artificial neural network algorithm is its nonlinearity and non-parametricity. But in classification by traditional algorithms such as statistical methods, they have lower accuracy because they have less flexibility. Parametric types of traditional methods, such as the maximum likelihood algorithm, due to depending on Gaussian statistics, if the data are not normal, cannot have the desired accuracy in classifying and separating classes from each other. In traditional algorithms such as maximum likelihood and minimum distance algorithms, training data play a vital role. In these methods, it is assumed that the distribution within the training samples should be normal so that if this condition cannot be met, the classification accuracy will be greatly reduced. While artificial neural network methods operate based on the characteristics and structure of the data itself. Conclusion The results of this study showed that using the data and ordinary images of a low-cost UAV, it is possible to study the condition of Dieback after the outbreak of the disease and determine its area. Despite the high cost of purchasing expensive sensors to monitor vegetation status, these methods presented in this article can be done at a much lower cost. This method can be of great help to the relevant institutions in determining the area of snag coatings.
Abdel-Rahman ME, Onisimo M, Elhadi A, Riyad I. 2014. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88: 48-59. doi:https://doi.org/10.1016/j.isprsjprs.2013.11.013.
Barton CV. 2012. Advances in remote sensing of plant stress. Plant and Soil, 354(1): 41-44. doi:https://doi.org/10.1007/s11104-011-1051-0.
Bulman LS. 2004. Assessment and control of Dothistroma needle-blight. Forest Research Bulletin. 48 p.
Calderón R, Navas-Cortés JA, Zarco-Tejada PJ. 2015. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing, 7(5): 5584-5610. doi:https://doi.org/10.3390/rs70505584.
Chenari A, Erfanifard Y, Dehghani M, Pourghasemi HR. 2018. Estimation of crown area of wild pistachio single trees using DSM of UAV aerial images in Baneh Research Forest, Fars province. Journal of Wood and Forest Science and Technology, 24(4): 117-130. doi:https://doi.org/ 10.22069/JWFST.2017.13322.1683. (In Persian).
Dash JP, Watt MS, Pearse GD, Heaphy M, Dungey HS. 2017. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 1-14. doi:https://doi.org/10.1016/j.isprsjprs.2017.07.007.
Dennison PE, Brunelle AR, Carter VA. 2010. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data. Remote Sensing of Environment, 114(11): 2431-2435. doi:https://doi.org/10.1016/j.rse.2010.05.018.
Gao J, Liao W, Nuyttens D, Lootens P, Vangeyte J, Pižurica A, He Y, Pieters JG. 2018. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International journal of applied earth observation and geoinformation, 67: 43-53. doi:https://doi.org/10.1016/j.jag.2017.12.012.
Golparvar-Fard M, Peña-Mora F, Savarese S. 2009. D4AR–a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of Information Technology in Construction, 14(13): 129-153.
Ishida T, Kurihara J, Viray FA, Namuco SB, Paringit EC, Perez GJ, Takahashi Y, Marciano Jr JJ. 2018. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Computers and Electronics in Agriculture, 144: 80-85. doi:https://doi.org/10.1016/j.compag.2017.11.027.
Kargar M, Sohrabi H. 2019. Using canopy height model derived from UAV images for tree height estimation in Sisangan forest. Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS techniques in Natural Resource Science), 10(3): 106-119. http://girs.iaubushehr.ac.ir/article_668477.html?lang=en. (In Persian).
Kargar MR, Sohrabi H. 2019. Estimation of tree biomass at individual tree, sample plot and hybrid level using drone images. Engineering Journal of Geospatial Information Technology, 7(3): 111-120. doi:https://doi.org/10.29252/jgit.7.3.213. (In Persian).
Lashari SA, Ibrahim R. 2015. Performance Comparison of Selected Classification Algorithms Based on Fuzzy Soft Set for Medical Data. In: Advanced Computer and Communication Engineering Technology. Springer, Book series (LNEE, volume 315), pp 813-820. https://doi.org/810.1007/1978-1003-1319-07674-07674_07676.
Lazarević J, Davydenko K, Millberg H. 2017. Dothistroma needle blight on high altitude pine forests in Montenegro. Baltic Forestry, 23(1): 294-302.
Leckie D, Jay C, Gougeon F, Sturrock R, Paradine D. 2004. Detection and assessment of trees with Phellinus weirii (laminated root rot) using high resolution multi-spectral imagery. International Journal of Remote Sensing, 25(4): 793-818. doi:https://doi.org/10.1080/0143116031000139926.
Lisein J, Linchant J, Lejeune P, Bouché P, Vermeulen C. 2013. Aerial surveys using an unmanned aerial system (UAS): comparison of different methods for estimating the surface area of sampling strips. Tropical Conservation Science, 6(4): 506-520. doi:https://doi.org/10.1177/194008291300600405.
McConnell ML, Ryan JM, Collmar W, Schönfelder V, Steinle H, Strong A, Bloemen H, Hermsen W, Kuiper L, Bennett K. 2000. A high-sensitivity measurement of the MeV gamma-ray spectrum of Cygnus X-1. The Astrophysical Journal, 543(2): 928. doi:https://doi.org/10.1086/317128.
Meigs GW, Kennedy RE, Cohen WB. 2011. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 115(12): 3707-3718. doi:https://doi.org/10.1016/j.rse.2011.09.009.
Miller E, Dandois JP, Detto M, Hall JS. 2017. Drones as a tool for monoculture plantation assessment in the steepland tropics. Forests, 8(5): 168. doi:https://doi.org/10.3390/f8050168.
Murugesan S, Bouchard K, Chang E, Dougherty M, Hamann B, Weber GH. 2017. Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions. BMC bioinformatics, 18(6): 1-15. doi:https://doi.org/10.1186/s12859-017-1633-9.
Poona NK, Ismail R. 2013. Discriminating the occurrence of pitch canker fungus in Pinus radiata trees using QuickBird imagery and artificial neural networks. Southern Forests: a Journal of Forest Science, 75(1): 29-40. doi:https://doi.org/10.2989/20702620.2012.748255.
Prošek J, Šímová P. 2019. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? International Journal of Applied Earth Observation and Geoinformation, 75: 151-162. doi:https://doi.org/10.1016/j.jag.2018.10.009.
Qin B, Xia Y, Prabhakar S, Tu Y. 2009. A rule-based classification algorithm for uncertain data. In: 2009 IEEE 25th International Conference on Data Engineering. IEEE, pp 1633-1640. https://doi.org/1610.1109/ICDE.2009.1164.
Ruggieri S. 2002. Efficient C4. 5 [classification algorithm]. IEEE transactions on knowledge and data engineering, 14(2): 438-444. doi:https://doi.org/10.1109/69.991727.
Sadeghi S, Sohrabi H. 2019. The effect of UAV flight altitude on the accuracy of individual tree height extraction in a broad-leaved forest. The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, 42(4): W18. doi:https://doi.org/10.5194/isprs-archives-xlii-4-w18-1168-2019.
Shahbazi M, Théau J, Ménard P. 2014. Recent applications of unmanned aerial imagery in natural resource management. GIScience & Remote Sensing, 51(4): 339-365. doi:https://doi.org/10.1080/15481603.2014.926650.
Stone C, Carnegie A, Melville G, Smith D, Nagel M. 2013. Aerial mapping canopy damage by the aphid Essigella californica in a Pinus radiata plantation in southern New South Wales: what are the challenges? Australian Forestry, 76(2): 101-109. doi:https://doi.org/10.1080/00049158.2013.799055.
Stone C, Coops NC. 2004. Assessment and monitoring of damage from insects in Australian eucalypt forests and commercial plantations. Australian Journal of Entomology, 43(3): 283-292. doi:https://doi.org/10.1111/j.1326-6756.2004.00432.x.
White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M. 2013. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests, 4(3): 518-536. doi:https://doi.org/10.3390/f4030518.
Wulder MA, Dymond CC, White JC, Leckie DG, Carroll AL. 2006. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and Management, 221(1-3): 27-41. doi:https://doi.org/10.1016/j.foreco.2005.09.021.
Wulder MA, White J, Bentz B, Alvarez M, Coops N. 2006. Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101(2): 150-166. doi:https://doi.org/10.1016/j.rse.2005.12.010.
Wulder MA, White J, Bentz B, Ebata T. 2006. Augmenting the existing survey hierarchy for mountain pine beetle red-attack damage with satellite remotely sensed data. Forestry Chronicle, 82(2): 187-202. https://www.fs.usda.gov/treesearch/pubs/27845.
Yu X, Hyyppä J, Holopainen M, Vastaranta M. 2010. Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sensing, 2(6): 1481-1495. doi:https://doi.org/10.3390/rs2061481.
Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99. doi:https://doi.org/10.1016/j.eja.2014.01.004.
_||_Abdel-Rahman ME, Onisimo M, Elhadi A, Riyad I. 2014. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88: 48-59. doi:https://doi.org/10.1016/j.isprsjprs.2013.11.013.
Barton CV. 2012. Advances in remote sensing of plant stress. Plant and Soil, 354(1): 41-44. doi:https://doi.org/10.1007/s11104-011-1051-0.
Bulman LS. 2004. Assessment and control of Dothistroma needle-blight. Forest Research Bulletin. 48 p.
Calderón R, Navas-Cortés JA, Zarco-Tejada PJ. 2015. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing, 7(5): 5584-5610. doi:https://doi.org/10.3390/rs70505584.
Chenari A, Erfanifard Y, Dehghani M, Pourghasemi HR. 2018. Estimation of crown area of wild pistachio single trees using DSM of UAV aerial images in Baneh Research Forest, Fars province. Journal of Wood and Forest Science and Technology, 24(4): 117-130. doi:https://doi.org/ 10.22069/JWFST.2017.13322.1683. (In Persian).
Dash JP, Watt MS, Pearse GD, Heaphy M, Dungey HS. 2017. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 1-14. doi:https://doi.org/10.1016/j.isprsjprs.2017.07.007.
Dennison PE, Brunelle AR, Carter VA. 2010. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data. Remote Sensing of Environment, 114(11): 2431-2435. doi:https://doi.org/10.1016/j.rse.2010.05.018.
Gao J, Liao W, Nuyttens D, Lootens P, Vangeyte J, Pižurica A, He Y, Pieters JG. 2018. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International journal of applied earth observation and geoinformation, 67: 43-53. doi:https://doi.org/10.1016/j.jag.2017.12.012.
Golparvar-Fard M, Peña-Mora F, Savarese S. 2009. D4AR–a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of Information Technology in Construction, 14(13): 129-153.
Ishida T, Kurihara J, Viray FA, Namuco SB, Paringit EC, Perez GJ, Takahashi Y, Marciano Jr JJ. 2018. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Computers and Electronics in Agriculture, 144: 80-85. doi:https://doi.org/10.1016/j.compag.2017.11.027.
Kargar M, Sohrabi H. 2019. Using canopy height model derived from UAV images for tree height estimation in Sisangan forest. Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS techniques in Natural Resource Science), 10(3): 106-119. http://girs.iaubushehr.ac.ir/article_668477.html?lang=en. (In Persian).
Kargar MR, Sohrabi H. 2019. Estimation of tree biomass at individual tree, sample plot and hybrid level using drone images. Engineering Journal of Geospatial Information Technology, 7(3): 111-120. doi:https://doi.org/10.29252/jgit.7.3.213. (In Persian).
Lashari SA, Ibrahim R. 2015. Performance Comparison of Selected Classification Algorithms Based on Fuzzy Soft Set for Medical Data. In: Advanced Computer and Communication Engineering Technology. Springer, Book series (LNEE, volume 315), pp 813-820. https://doi.org/810.1007/1978-1003-1319-07674-07674_07676.
Lazarević J, Davydenko K, Millberg H. 2017. Dothistroma needle blight on high altitude pine forests in Montenegro. Baltic Forestry, 23(1): 294-302.
Leckie D, Jay C, Gougeon F, Sturrock R, Paradine D. 2004. Detection and assessment of trees with Phellinus weirii (laminated root rot) using high resolution multi-spectral imagery. International Journal of Remote Sensing, 25(4): 793-818. doi:https://doi.org/10.1080/0143116031000139926.
Lisein J, Linchant J, Lejeune P, Bouché P, Vermeulen C. 2013. Aerial surveys using an unmanned aerial system (UAS): comparison of different methods for estimating the surface area of sampling strips. Tropical Conservation Science, 6(4): 506-520. doi:https://doi.org/10.1177/194008291300600405.
McConnell ML, Ryan JM, Collmar W, Schönfelder V, Steinle H, Strong A, Bloemen H, Hermsen W, Kuiper L, Bennett K. 2000. A high-sensitivity measurement of the MeV gamma-ray spectrum of Cygnus X-1. The Astrophysical Journal, 543(2): 928. doi:https://doi.org/10.1086/317128.
Meigs GW, Kennedy RE, Cohen WB. 2011. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 115(12): 3707-3718. doi:https://doi.org/10.1016/j.rse.2011.09.009.
Miller E, Dandois JP, Detto M, Hall JS. 2017. Drones as a tool for monoculture plantation assessment in the steepland tropics. Forests, 8(5): 168. doi:https://doi.org/10.3390/f8050168.
Murugesan S, Bouchard K, Chang E, Dougherty M, Hamann B, Weber GH. 2017. Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions. BMC bioinformatics, 18(6): 1-15. doi:https://doi.org/10.1186/s12859-017-1633-9.
Poona NK, Ismail R. 2013. Discriminating the occurrence of pitch canker fungus in Pinus radiata trees using QuickBird imagery and artificial neural networks. Southern Forests: a Journal of Forest Science, 75(1): 29-40. doi:https://doi.org/10.2989/20702620.2012.748255.
Prošek J, Šímová P. 2019. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? International Journal of Applied Earth Observation and Geoinformation, 75: 151-162. doi:https://doi.org/10.1016/j.jag.2018.10.009.
Qin B, Xia Y, Prabhakar S, Tu Y. 2009. A rule-based classification algorithm for uncertain data. In: 2009 IEEE 25th International Conference on Data Engineering. IEEE, pp 1633-1640. https://doi.org/1610.1109/ICDE.2009.1164.
Ruggieri S. 2002. Efficient C4. 5 [classification algorithm]. IEEE transactions on knowledge and data engineering, 14(2): 438-444. doi:https://doi.org/10.1109/69.991727.
Sadeghi S, Sohrabi H. 2019. The effect of UAV flight altitude on the accuracy of individual tree height extraction in a broad-leaved forest. The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, 42(4): W18. doi:https://doi.org/10.5194/isprs-archives-xlii-4-w18-1168-2019.
Shahbazi M, Théau J, Ménard P. 2014. Recent applications of unmanned aerial imagery in natural resource management. GIScience & Remote Sensing, 51(4): 339-365. doi:https://doi.org/10.1080/15481603.2014.926650.
Stone C, Carnegie A, Melville G, Smith D, Nagel M. 2013. Aerial mapping canopy damage by the aphid Essigella californica in a Pinus radiata plantation in southern New South Wales: what are the challenges? Australian Forestry, 76(2): 101-109. doi:https://doi.org/10.1080/00049158.2013.799055.
Stone C, Coops NC. 2004. Assessment and monitoring of damage from insects in Australian eucalypt forests and commercial plantations. Australian Journal of Entomology, 43(3): 283-292. doi:https://doi.org/10.1111/j.1326-6756.2004.00432.x.
White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M. 2013. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests, 4(3): 518-536. doi:https://doi.org/10.3390/f4030518.
Wulder MA, Dymond CC, White JC, Leckie DG, Carroll AL. 2006. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and Management, 221(1-3): 27-41. doi:https://doi.org/10.1016/j.foreco.2005.09.021.
Wulder MA, White J, Bentz B, Alvarez M, Coops N. 2006. Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101(2): 150-166. doi:https://doi.org/10.1016/j.rse.2005.12.010.
Wulder MA, White J, Bentz B, Ebata T. 2006. Augmenting the existing survey hierarchy for mountain pine beetle red-attack damage with satellite remotely sensed data. Forestry Chronicle, 82(2): 187-202. https://www.fs.usda.gov/treesearch/pubs/27845.
Yu X, Hyyppä J, Holopainen M, Vastaranta M. 2010. Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sensing, 2(6): 1481-1495. doi:https://doi.org/10.3390/rs2061481.
Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99. doi:https://doi.org/10.1016/j.eja.2014.01.004.