بررسی منشأ و نحوه گسترش مکانی غلظت های بالای گردوغبار و تحلیل همدیدی آن در حوزه گاوخونی
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیزهرا سعیدی فر 1 * , محمد خسروشاهی 2 , آزاده گوهردوست 3 , زهره ابراهیمی خوسفی 4 , سکینه لطفی نسب اصل 5 , فاطمه درگاهیان 6
1 - دکتری بیابانزدایی، گروه تحقیقات بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
2 - دانشیار گروه تحقیقات بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی ، تهران، ایران
3 - کارشناس ارشد آبخیزداری، گروه تحقیقات بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
4 - استادیار گروه مهندسی طبیعت، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران
5 - استادیار پژوهشی، گروه تحقیقات بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
6 - استادیار پژوهشی، گروه تحقیقات بیابان، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
کلید واژه: جهت باد, مدل گردوغبارNMMB / BSC-Dust, غلظت گردوغبار, عمق نوری ذرات معلق در هوا,
چکیده مقاله :
پیشینه و هدف در سالهای اخیر، بحران ناشی از ورود گرد وغبارها در مناطق جنوب شرقی کشور یکی از ملموسترین حوادث طبیعی-انسانی مؤثر بر زندگی روزمره شهروندان و همچنین اقتصاد این منطقه بوده است. افزایش دسترسی به منابع مختلف پردازش داده، موجب گسترش مدل سازی گردوغبار در سطوح مختلف ازجمله سطوح محلی، منطقهای و جهانی شده است و باعث درک سازوکار سیستم های پیچیده طبیعی میشود. مدلسازی پدیده گردوغبار، به شناسایی عوامل اصلی ایجاد آن در یک منطقه و میزان اهمیت هر عامل کمک بسزایی میکند. یکی از این مدلها که برای تشخیص غلظت و شدت گردوغبار موجود در جو و نمایش محدوده دارای این پدیده و تعیین منشأ آن استفاده میشود مدل گردوغبار (NMMB/BSC) است. هدف این مقاله نیز شناسایی و پایش گردوغبار مؤثر و متأثر از حوزه تالاب گاوخونی از دو روش تفسیر بصری و رهگیری در تصاویر ماهوارهای با استفاده از مدل مذکور است. شناسایی مناطق مستعد وقوع پدیده گردوغبار با این مدل و بررسی همدیدی آن میتواند گامی در جهت مدیریت این پدیده در منطقه باشد.مواد و روش هاجهت تعیین مناطق مستعد وقوع غلظتهای بالای گردوغبار در منطقه ابتدا در دوره زمانی سال های 2014-2016 طوفانهای فراگیر در منطقه به صورت ماهانه براساس پارامتر عمق نوری ذرات معلق در هوا (AOD) تعیین گردید و سپس توسط پارامتر میدان دید حداقل و تداوم وقایع گردوغبار حاصل از اطلاعات ایستگاه های سینوپتیک سازمان هواشناسی، روزهای با کمترین میدان دید و بیشترین تداوم در بازه ماه های تعیینشده (ماه های با بیشترین غلظت AOD) انتخاب گردید عمق نوری ذرات معلق در هوا با استفاده از حسگر مودیس و الگوریتم دیپ بلو محاسبه گردید. به منظور تعیین شناسایی مناطق با بیشترین استعداد وقوع گردوغبار در حوزه آبخیز گاوخونی از مدل MMB/BSC-Dust استفاده گردید. با استفاده از این مدل مسیرهای انتقال غلظتهای گردوغبار تا 72 ساعت بعد از وقوع به صورت بازههای سه ساعته رصد گردید. براین اساس درگام بعدی از بین 25 نقشه خروجی مدل برای هر مقطع زمانی، یک نقشه با بیشترین غلظت گردوغبار به وقوع پیوسته در حوزه مشخص گردید. سپس با نقشههای همدیدی و تصاویر طوفانهای گردوغبار سنجنده مودیس حاصل از پایگاه وردویو (worldview) مقایسه گردید. تا ارتباط این پارامترها بر غلظتهای بالای گردوغبار به وقوع پیوسته آزموده شود. در مطالعات همدیدی، هدف تبیین روابط کلیدی میان جو و محیط است. بهمنظور تعین الگوهای جوی حاکم بر حوزه در تاریخهای موردبررسی، محدوده جغرافیایی 20 تا 50 درجه شمالی و 40 تا 65 درجه شرقی برای دریافت دادههای رقومی تعیین شد. در ادامه دادههای ساعتی رقومی بادهای منطقهای ترازهای مختلف جوی 100،500،700 و 850 هکتوپاسکال برای روزهای با بالاترین غلظت گردوغبار از مرکز ملی پیشبینی محیطی آمریکا/ مرکز ملی پژوهش های جوی (NCEP/NCAR) دریافت گردید و نقشههای به دستآمده با هرکدام از الگوهای غلظت گردوغبار مورد مقایسه و تحلیل قرار گرفت.نتایج و بحثتصویر منتخب از بازه 72 ساعته در تاریخ 4/6/2014 نشان از متأثرشدن حوزه از مناطق جنوب غربی کشور و بهخصوص کانون های گردوغبار خوزستان و عراق است که در طی حرکت به سمت مناطق مرکزی کشور بهتدریج حوزه را متأثر می سازد. تصاویر سنجنده مودیس نیز وجود این توده گردوغبار برروی نواحی جنوب غربی کشور در این تاریخ و متأثر کردن حوزه را به اثبات رساند. تصویر متعلق به تاریخ 25/4/2015 وجود یک توده متراکم گردوغبار در نواحی جنوب غرب کشور و متأثر شدن حوزه گاوخونی از این توده را به اثبات رساند. در این تاریخ بخش هایی از حوزه ازجمله بخش شرقی تالاب گاوخونی و مرکز حوزه خود چشمه کوچک تولید گردوغبار بوده اند. واقعه گردوغبار رخ داده در تاریخ 1/10/2016 نشان از متأثر شدن حوزه از چشمه های گردوغبار در کویر مرکزی دارد بهطوریکه با حرکت تودههای متراکم گردوغبار از سمت کویر مرکزی و کویر سیاه شاهد تحت تأثیر قرار گرفتن حوزه بودهایم. و نواحی مرکزی حوزه خود بهصورت چشمه گردوغبار عمل کرده و در تشدید غلظت گردوغبار نقش داشت. بهمنظور بررسی میزان انطباق غلظت های گردوغبار با وضعیت بادهای منطقه از میان 25 تصویر در بازه 72 ساعت یک تصویر با بیشترین غلظت گردوغبار در منطقه انتخاب گردید و با وضعیت بادهای منطقه در فشارهای مختلف 100، 500، 700 و 850 پاسکال موردبررسی قرار گرفت. همانطوری که در تحلیل همدیدی گردوغبار مشاهده گردید به دلیل قرارگیری یککم فشار در مرکز ایران با توجه به چرخش سیکلونی (پادساعتگرد در نیمکره شمالی) در سمت شمالی و جنوبی به ترتیب باد شرقی و باد غربی تسلط یافته است. تسلط باد غربی با حرکت مداری در وقایع گردوغباری رخداده حوزه در بیشتر تاریخهای شناساییشده به اثبات رسیده است. در آخرین واقعه در سال 2016 شاهد گسترش یک مرکز پرفشار برروی کشور و تغییر این جریان و غالبیت باد شرقی در ترازهای بالایی جو بودیم. بررسی وضعیت بادهای رخداده در تاریخ13/3/2014در ساعت 0 تا 06 بهوقت گرینویچ نشاندهنده تشکیل مراکز با سرعتهای بالاتر از 12 متر بر ثانیه در محدوده شکلگیری کانونهای گردوغبار است. جهت وزش بادها از غرب به شرق است و گردوغبار عبوری از حوزه از نواحی غربی کشور ازجمله کانونهای گردوغبار استان خوزستان و عراق منشأ گرفته است. در این واقعه شاهد حاکمیت مراکز کمفشار ناپایدار بر روی سطح حوزه بودهایم که خود میتواند یکی از عوامل اساسی در تشدید پدیده گردوغبار بر روی سطح حوزه باشد. بررسی بادهای امگا (بادهای عمودی در سطح زمین) نشان از شکل گیری یک مرکز صعود هوا بر روی محدوده شکلگیری هسته پرسرعت باد و کانونهای گردوغبار دارد. دومین واقعه موردبررسی در تاریخ2/2/2015در ساعت 3 به وقت گرینویچ به وقوع پیوسته است. بررسی نقشه های جهت باد نشانگر شکلگیری مراکز با سرعت بالاتر از 25 متر بر ثانیه با جهت غرب به شرق بر روی سطح مناطق غربی کشور و حوزه گاوخونی بوده ایم که این وضعیت باعث تشدید تولید گردوغبار در کانون های حساس منطقه ازجمله خوزستان و حرکت آن به سمت حوزه گاوخونی و متأثر کردن حوزه است. بررسی وضعیت باد تا ترازهای بالایی جو نیز نشان از ثابت بودن رژیم باد در عین افزایش سرعت آن در تمامی ترازهای جو داشت. بررسی نقشههای بادهای امگا (بادهای عمودی در سطح زمین) و فشار سطح دریا نشان از شکلگیری یک مرکز صعود هوا (کمفشار) و ناپایدار بر روی منطقه درنتیجه کمک به تشدید وضعیت گردوغبار منطقه دارد. بررسی واقعه گردوغبار رخداده در تاریخ 1/10/2016 در ساعت 18 بهوقت گرینویچ نشان از شکلگیری هستههای با سرعتبالای باد بالاتر از 17 متر بر ثانیه در مناطق شرقی کشور داشت که در تراز 850 هکتو پاسکال دارای جهت شرقی-غربی است شکلگیری این هستههای پرسرعت و وزش بادها از سمت شرق به حوزه سبب متأثر شدن حوزه گاوخونی از گردوغبار تولیدشده از کویر مرکزی و کویر سیاه شده است. بادهای عمودی نیز نشاندهنده تقابل جریان صعودی و نزولی در یک راستا و حرکت از سمت پرفشار (شرق) به سمت کمفشار (غرب) و شکلگیری جریان شرقی- غربی دارد.نتیجه گیری نتایج این تحقیق نشان داد که منشأ وقوع گردوغبار در حوزه گاوخونی کانونهای تولید گردوغبار خوزستان و عراق، کویر مرکزی و بخشهای کوچکی از مرکز حوزه و اطراف تالاب گاوخونی است. علاوه بر این بررسی همدیدی مناطق مستعد گردوغبار نشان داد که در تاریخهای وقوع گردوغبار مناطق کم فشار و هستههای با سرعتهای بالای باد (غالباً با سرعتبالای 12 متر بر ثانیه) در ترازهای مختلف جو بر روی منطقه تشکیلشده است که با جهت بادها و به حرکت درآمدن تودههای متراکم گردوغبار به سمت حوزه و درنتیجه وقوع طوفان گردوغبار همراه است.
Background and ObjectiveIn recent years, the crisis caused by dust in the southeastern regions of the country has been one of the natural-human events affecting the daily lives of citizens and the economy of the region. Increasing access to various data processing sources has expanded dust modeling at various levels, including local, regional, and global levels, and has helped to understand the mechanism of complex natural systems. dust Modeling helps to identify the main factors that create it and the importance of each factor. One of these models that are used to detect the concentration and intensity of dust in the atmosphere and the range of this phenomenon and determine its origin is the dust model (NMMB / BSC). The purpose of this paper is to identify and monitor dust from the Gavkhoni basin by two methods of visual interpretation and tracking in satellite images using the mentioned model. Identifying areas with the possibility of dust and its synoptical study can be an important step in managing this phenomenon in the region. Materials and Methods In order to determine the potential areas of high concentrations of dust in the region, first in the period of 2016-2016, pervasive storms in the region were determined on a monthly basis based on the Aerosol optical depth parameter (AOD). Then, by the parameter of the minimum visibility and continuity of dust events obtained from the information of synoptic stations of the Meteorological Organization, the days with the lowest field of view and the highest continuity in the specified months (months with the highest AOD concentration) were selected. The Aerosol optical depth was calculated by using the Modis sensor and the Deep Blue algorithm. The MMB / BSC-Dust model was used to identify the most dust suscribted areas in the Gavkhoni basin. With the help of this model, dust transfer routes were monitored for three hours within 72 hours after the occurrence. Accordingly, in the next step of 25 model output maps for each time period, a map with the highest dust concentration in the basin was determined. To test the relationship of these parameters to the high concentrations of dust the output was then compared with the Synoptical maps and dust images of the Modis sensor dust storm from the Worldview database. In Synoptical studies, the goal is explaining the key relationships between the atmosphere and the environment. In order to determine the atmospheric patterns in the basin on the studied dates, the geographical range of 20 to 50 degrees north and 40 to 65 degrees east to receive digital data was determined. The hourly data of winds of different atmospheric levels of 100, 500, 700 and 850 hectopascals for days with the highest dust concentration were obtained from NCEP / NCAR center and the obtained maps were compared and analyzed with each of the dust concentration patterns. Results and Discussion The selected image of the 72-hour period on 4/6/2014 shows that the basin is affected by the southwestern regions of the country, especially the dust centers of Khuzestan and Iraq, which gradually affect the basin during the movement towards the central regions of the country. Images of the Modis sensor also confirmed the presence of this dust mass on the southwestern regions of the country and affected the basin on this date. The image of 4/25/2015 proved the existence of a dense dust mass in the southwestern regions of the country and the impact of the Gavkhoni basin from this mass. On this date, parts of the basin, including the eastern part of Gavkhoni Wetland and the center of the Little Spring Basin, have been producing dust. On this date, parts of the basin, including the eastern part of Gavkhoni Wetland and the center of the basin, have been a small source of dust. The dust event that occurred on 1/10/2016 shows that the basin is affected by dust sources in the Central Desert so that by moving the dense masses of dust from the central desert and the Black Desert, the basin was affected by them. And the central areas of the basin acted as a source of dust and contributed to the intensification of dust concentrations. As can be seen in the dust analysis, due to the low pressure in the center of Iran due to cyclonic rotation (counterclockwise in the northern hemisphere) on the north and south sides, the east wind and the west wind have dominated, respectively. The dominance of the western wind with orbital motion in dust storm events has been proven in most of the identified dates. In the most recent case, in 2016, we witnessed the expansion of a high-pressure center across the country and the change of this trend and the dominance of the east wind in the high levels of the atmosphere. An examination of the condition of the winds that took place on 13/3/2014 at 0-06 GMT shows the formation of centers with speeds higher than 12 m/s in the formation of dust centers. The winds blow from west to east and the dust passing through the basin originates from the western parts of the country, including the dust centers of Khuzestan and Iraq provinces. In this case, we have witnessed the dominance of unstable low-pressure centers on the surface of the basin, which can be one of the main factors in aggravating the dust phenomenon on the surface of the basin. Examination of omega winds (vertical winds on the ground) indicates the formation of an air ascent center on the range of the formation of high-speed wind nuclei and dust centers. The second incident occurred on 2/2/2015 at 3:00 PM GMT. Examination of wind direction maps shows the formation of centers with a speed of more than 25 meters per second with west-east direction on the surface of the western regions of the country and Gavkhoni basin, which aggravates dust production in sensitive areas such as Khuzestan and its movement Towards the Gavkhooni basin and affecting the basin. Examination of wind conditions to high atmospheric levels also showed that the wind regime was constant while increasing its speed at all atmospheric levels. An examination of the maps of omega winds (vertical winds on the ground) and sea surface pressure indicates the formation of an airborne and unstable (low pressure) center on the region, thus helping to aggravate the dust situation in the region. An examination of the dust storm that took place on 1/10/2016 at 6:00 PM GMT showed the formation of high wind speeds above 17 m/s in the eastern regions of the country, which are in the east-west direction at 850 ha Pascal level. he formation of these high-speed nuclei and the blowing of winds from the east to the basin have affected the Gavkhoni basin from the dust produced from the central desert and the black desert. Vertical winds also indicate the rising and falling currents and the movement of winds from high pressure (east) to low pressure (west) and the formation of east-west currents. Conclusion The results of this study showed that the source of dust occurrence in Gawkhuni basin is the Khuzestan and Iraq dust production centers, central desert and small parts of the basin center and around Gavkhuni Wetland. In addition, a synoptic examination of suitable areas of dust occurrence revealed that at the dates of the dust storms, low-pressure zones and high-velocity cores are formed at different levels of the atmosphere over the area, which is associated with the direction of the winds and the movement of dense masses of dust toward the basin.
Baddock MC, Bullard JE, Bryant RG. 2009. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7): 1511-1528. doi:https://doi.org/10.1016/j.rse.2009.03.002.
Engelstadler S. 2001. Dust storm frequencies and their relationships to land surface conditions. Freidrich-Schiller University Press, Jena, Germany 340 p.
Gillette DA, Herrick JE, Herbert GA. 2006. Wind Characteristics of Mesquite Streets in the Northern Chihuahuan Desert, New Mexico, USA. Environmental Fluid Mechanics, 6(3): 241-275. doi:10.1007/s10652-005-6022-7.
Groll M, Opp C, Aslanov I. 2013. Spatial and temporal distribution of the dust deposition in Central Asia – results from a long term monitoring program. Aeolian Research, 9: 49-62. doi:https://doi.org/10.1016/j.aeolia.2012.08.002.
Haustein K, Pérez C, Baldasano J, Jorba O, Basart S, Miller R, Janjic Z, Black T, Nickovic S, Todd M. 2011. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model--Part 2: Experimental campaigns in Northern Africa. Atmospheric Chemistry & Physics Discussions, 11(11): 30273-30331.
Ishizuka M, Mikami M, Yamada Y, Zeng F, Gao W. 2005. An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. Journal of Geophysical Research: Atmospheres, 110(D18). doi:https://doi.org/10.1029/2004JD004709.
Karegar E, Bodagh Jamali J, Ranjbar Saadat Abadi A, Moeenoddini M, Goshtasb H. 2017. Simulation and Numerical Analysis of severe dust storms Iran East. Journal of Spatial Analysis Environmental Hazarts, 3(4): 101-119. (In Persian). doi:https://doi.org/10.18869/acadpub.jsaeh.3.4.101.
Mahmood Abadi M, Rajabpour H. 2017. Study on the effect of initial soil moisture content on wind erosion rate using a laboratory wind tunnel. Journal of Water and Soil Conservation, 24(2): 167-183. (In Persian). doi:https://doi.org/10.22069/JWFST.2017.10419.2485.
Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global biogeochemical cycles, 19(4). doi:https://doi.org/10.1029/2004GB002402.
Rashki A, Arjmand M, Kaskaoutis DG. 2017. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Research, 24: 145-160. doi:https://doi.org/10.1016/j.aeolia.2017.01.002.
Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA. 2013. Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Science of The Total Environment, 463-464: 552-564. doi:https://doi.org/10.1016/j.scitotenv.2013.06.045.
Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN. 2005. The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4): 947-973. doi:https://doi.org/10.1175/JAS3385.1.
Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanré D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H. 2008. Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14). doi:https://doi.org/10.1029/2007JD009661.
Remer LA, Tanré D, Kaufman YJ, Levy R, Mattoo S. 2006. Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005. National Aeronautics and Space Administration, 1490.
Tanré D, Kaufman Y, Herman M, Mattoo S. 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14): 16971-16988. doi:https://doi.org/10.1029/96JD03437.
Tegen I. 2006. Effects of atmospheric dust. Encyclopedia of Quaternary Science Elsevier, Netherlands. doi:https://doi.org/10.1016/B0-444-52747-8/00029-6.
Wang S, Wang J, Zhou Z, Shang K. 2005. Regional characteristics of three kinds of dust storm events in China. Atmospheric Environment, 39(3): 509-520. doi:https://doi.org/10.1016/j.atmosenv.2004.09.033.
Wang YS, Wang YM, Lin HH, Tang TI. 2003. Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management, 14(5): 501-519. doi:https://doi.org/10.1108/09564230310500192.
World Meteorological Organization W. 1995. Manual on Codes, Suppl. 6(VIII.2007), WMO, Geneva, Switzerland, 175 p.
Xuan J, Sokolik IN, Hao J, Guo F, Mao H, Yang G. 2004. Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmospheric Environment, 38(36): 6239-6252. doi:https://doi.org/10.1016/j.atmosenv.2004.06.042.
Zazuli FM, Vafaeinejad Khairkhah A, Zarkash M, Ahmadi Dehka F. 2015. Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. Journal of RS and GIS for Natural Resources (Journal of Applied RS & GIS Techniques in Natural Resource Science), 5(4): 61-78. (In Persian).
Zolfaghari H, Abedzadeh H. 2005. Synoptic Analysis of Dust Systems in Western Iran. Journal of Geography and Development, 6: 173-178. (In Persian).
_||_Baddock MC, Bullard JE, Bryant RG. 2009. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7): 1511-1528. doi:https://doi.org/10.1016/j.rse.2009.03.002.
Engelstadler S. 2001. Dust storm frequencies and their relationships to land surface conditions. Freidrich-Schiller University Press, Jena, Germany 340 p.
Gillette DA, Herrick JE, Herbert GA. 2006. Wind Characteristics of Mesquite Streets in the Northern Chihuahuan Desert, New Mexico, USA. Environmental Fluid Mechanics, 6(3): 241-275. doi:10.1007/s10652-005-6022-7.
Groll M, Opp C, Aslanov I. 2013. Spatial and temporal distribution of the dust deposition in Central Asia – results from a long term monitoring program. Aeolian Research, 9: 49-62. doi:https://doi.org/10.1016/j.aeolia.2012.08.002.
Haustein K, Pérez C, Baldasano J, Jorba O, Basart S, Miller R, Janjic Z, Black T, Nickovic S, Todd M. 2011. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model--Part 2: Experimental campaigns in Northern Africa. Atmospheric Chemistry & Physics Discussions, 11(11): 30273-30331.
Ishizuka M, Mikami M, Yamada Y, Zeng F, Gao W. 2005. An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. Journal of Geophysical Research: Atmospheres, 110(D18). doi:https://doi.org/10.1029/2004JD004709.
Karegar E, Bodagh Jamali J, Ranjbar Saadat Abadi A, Moeenoddini M, Goshtasb H. 2017. Simulation and Numerical Analysis of severe dust storms Iran East. Journal of Spatial Analysis Environmental Hazarts, 3(4): 101-119. (In Persian). doi:https://doi.org/10.18869/acadpub.jsaeh.3.4.101.
Mahmood Abadi M, Rajabpour H. 2017. Study on the effect of initial soil moisture content on wind erosion rate using a laboratory wind tunnel. Journal of Water and Soil Conservation, 24(2): 167-183. (In Persian). doi:https://doi.org/10.22069/JWFST.2017.10419.2485.
Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global biogeochemical cycles, 19(4). doi:https://doi.org/10.1029/2004GB002402.
Rashki A, Arjmand M, Kaskaoutis DG. 2017. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Research, 24: 145-160. doi:https://doi.org/10.1016/j.aeolia.2017.01.002.
Rashki A, Kaskaoutis DG, Goudie AS, Kahn RA. 2013. Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Science of The Total Environment, 463-464: 552-564. doi:https://doi.org/10.1016/j.scitotenv.2013.06.045.
Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN. 2005. The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4): 947-973. doi:https://doi.org/10.1175/JAS3385.1.
Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanré D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H. 2008. Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14). doi:https://doi.org/10.1029/2007JD009661.
Remer LA, Tanré D, Kaufman YJ, Levy R, Mattoo S. 2006. Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005. National Aeronautics and Space Administration, 1490.
Tanré D, Kaufman Y, Herman M, Mattoo S. 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14): 16971-16988. doi:https://doi.org/10.1029/96JD03437.
Tegen I. 2006. Effects of atmospheric dust. Encyclopedia of Quaternary Science Elsevier, Netherlands. doi:https://doi.org/10.1016/B0-444-52747-8/00029-6.
Wang S, Wang J, Zhou Z, Shang K. 2005. Regional characteristics of three kinds of dust storm events in China. Atmospheric Environment, 39(3): 509-520. doi:https://doi.org/10.1016/j.atmosenv.2004.09.033.
Wang YS, Wang YM, Lin HH, Tang TI. 2003. Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management, 14(5): 501-519. doi:https://doi.org/10.1108/09564230310500192.
World Meteorological Organization W. 1995. Manual on Codes, Suppl. 6(VIII.2007), WMO, Geneva, Switzerland, 175 p.
Xuan J, Sokolik IN, Hao J, Guo F, Mao H, Yang G. 2004. Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmospheric Environment, 38(36): 6239-6252. doi:https://doi.org/10.1016/j.atmosenv.2004.06.042.
Zazuli FM, Vafaeinejad Khairkhah A, Zarkash M, Ahmadi Dehka F. 2015. Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. Journal of RS and GIS for Natural Resources (Journal of Applied RS & GIS Techniques in Natural Resource Science), 5(4): 61-78. (In Persian).
Zolfaghari H, Abedzadeh H. 2005. Synoptic Analysis of Dust Systems in Western Iran. Journal of Geography and Development, 6: 173-178. (In Persian).