فیلترینگ یک طرفه و دوطرفه ریسک با استفاده از مدل عاملی پویای تعمیم یافته در بورس اوراق بهادار تهران
محورهای موضوعی :
مهندسی مالی
امیر سرآبادانی
1
,
علی باغانی
2
,
محسن حمیدیان
3
,
قدرت الله امام وردی
4
,
نوروز نوراله زاده
5
1 - گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه اقتصاد نظری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
5 - گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1398/09/26
تاریخ پذیرش : 1398/12/17
تاریخ انتشار : 1399/07/01
کلید واژه:
فیلترینگ یکطرفه و دوطرفه ریسک,
مدل عاملی پویای تعمیمیافته,
جزء ویژه سریهای زمانی,
جزء مشترک سریهای زمانی,
چکیده مقاله :
چکیدهبرآورد ریسک بدون در نظر گرفتن عوامل مرتبط و فقط با تمرکز بر روی چند سری معادلات، پیشبینیهای غیرمعمولی را ایجاد میکند. در این مطالعه از اطلاعات یک صفحه بزرگسریهای زمانی و روشی جدید برای برآورد ریسک استفاده نمودیم. این برآورد با استفاده از بازده دادههای روزانه سری زمانی 25 شاخص مختلف بورس اوراق بهادار تهران در بازه دهساله از 1387 الی 1397 بر اساس یک مدل عاملی پویای تعمیمیافته (GDFM) انجام شد. ابتدا با استفاده از مدل عاملی پویای توسعهیافته توسط فورنی و همکاران نسبت به تعیین تعداد عوامل استاتیک و دینامیک مدل عاملی اقدام نموده و در ادامه نوسانات جزء مشترک سریهای تحت مطالعه را با کمک نرمافزار MATLAB فیلتر نموده و بهعنوان ریسک بورس اوراق بهادار تهران برآورد نمودیم. در ادامه از روش حداقل مربعات تعمیمیافته (GLS)، تأثیر ریسکهای فیلتر شده را بر روی بازده شاخص کل بورس موردبررسی قراردادیم. نتایج نشان داد اگر چه ریسکهای برآورد شده از طریق فیلترینگ یکطرفه و فیلترینگ دوطرفه بهصورت معنیداری تغییرات بازده شاخص کل بورس موردمطالعه را توضیح میدهند، اما ریسک برآورد شده از طریق فیلتر دوطرفه با استفاده از مدل عاملی پویای تعمیمیافته، تغییرات بازده را بسیار بهتر از فیلتر یکطرفه با استفاده از همان مدل توضیح میدهد.
چکیده انگلیسی:
AbstractAccording to statistics, risk estimation makes unusual predictions without focusing on the relevant factors and only focusing on a set of equations. In this study, we used a spreadsheet data set of time series and a new method for risk estimation. This estimation was based on a generalized dynamic factor model (GDFM) and daily data series obtained from different measures of Tehran Stock Exchange over a 10-year period during 2008 to 2018. we first utilized a generalized dynamic factor model proposed by Forni et al in order to determine statistic and dynamic factors. In the second step, by using MATLAB, we estimated the joint component of the study series as Tehran Stock Exchange risk. Next, using the generalized least squares (GLS) method, we examined the impact of each of the filtered risks on the index returns. The results showed that although both risks estimated through one-side and two-side filtering substantially and significantly explain the changes in the performance of the studied indices, but the risk estimated through two-side filtering using GDFM can explain the returns changes much better and more accurate than the one-side filter using the same model.
منابع و مأخذ:
پورباباگل، حمزه، نیری، محمد حسین. (1393). کاربرد تحلیل عاملی در مدل ترکیبی DEA فازی با مدل مارکوویتز در تعیین پرتفویی از کاراترین شرکتها در بورس اوراق بهادار تهران. دانش مالی تحلیل اوراق بهادار، 7(24), 117-145.
دمیرچی ؛ فاطمه. (۱۳89) . بهینه سازی سبد سرمایه گذاری با استفاده از معیار ارزش در معرض ریسک شرطی (CVaR) در بورس اوراق بهادار تهران. پایان نامه کارشناسی ارشد مدیریت بازرگانی گرایش مدیریت مالی، دانشگاه الزهرا، چاپ نشده.
رهنمای رود پشتی؛ فریدون،قندهاری ؛ شراره. (۱۳۹4) . برآورد ارزش در معرض خطر مبتنی بر محدودیت بر ارزیابی عملکرد مدیریت پرتفوی فعال در بورس اوراق بهادار تهران، فصلنامه علمی پژوهش مهندسی مالی و مدیریت اوراق بهادار، دوره 6، شماره 24 .
مختارزاده, نیما, کرامت, شاپور. (1394). ارائه مدلی برای تحلیل ریسک اتحادهای راهبردی و فناورانه.مدیریت نوآوری, دوره 4 شماره3. ص119-140.
نیکومرام, هاشم و زمردیان, غلامرضا. (۱۳93). بررسی توان تبیین مدل های شبکه عصبی درسنجش میزان ارزش در معرض خطر.مهندسی مالی و مدیریت اوراق بهادار, 5(19), 19-38.
Barigozzi, M., & Hallin, M. (2017). Generalized dynamic factor models and volatilities: estimation and forecasting. Journal of Econometrics, 201(2), 307-321.
Chulia, H., Guillen, M., & Uribe, J. M. (2016). Modeling longevity risk with generalized dynamic factor models and vine-copulae. ASTIN Bulletin: The Journal of the IAA, 46(1), 165-190.
Chuliá, H., Guillén, M., & Uribe, J. M. (2017). Measuring uncertainty in the stock market. International Review of Economics & Finance, 48, 18-33.
Forni, M., & Lippi, M. (2001). The generalized dynamic factor model: representation theory. Econometric theory, 17(6), 1113-1141.
Forni, M., & Reichlin, L. (1998). Let's get real: a factor analytical approach to disaggregated business cycle dynamics. The Review of Economic Studies, 65(3), 453-473.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. Review of Economics and statistics, 82(4), 540-554.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2004). The generalized dynamic factor model consistency and rates. Journal of Econometrics, 119(2), 231-255.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830-840.
Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2015). Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. Journal of econometrics, 185(2), 359-371.
Gao, Q., & Hu, C. (2009). Dynamic mortality factor model with conditional heteroskedasticity. Insurance: Mathematics and Economics, 45(3), 410-423.
Gkillas, K., Tsagkanos, A., & Vortelinos, D. I. (2019). Integration and risk contagion in financial crises: Evidence from international stock markets. Journal of Business Research, 104, 350-365.
Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603-617.
Hallin, M., Mathias, C., Pirotte, H., & Veredas, D. (2011). Market liquidity as dynamic factors. Journal of econometrics, 163(1), 42-50.
Jin, X., & De Simone, F. D. A. N. (2014). Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach. Journal of Financial Stability, 14, 81-101.
Nieuwenhuyze, C. V. (2005). A Generalized Dynamic Factor Model for the Belgian Economy. Journal of Business Cycle Measurement and Analysis, 2005(2), 213-247.
Nieuwenhuyze, C. V. (2006). A generalised dynamic factor model for the Belgian economy-Useful business cycle indicators and GDP growth forecasts. National Bank of Belgium Working Paper, (80).
Sargent, T. J., & Sims, C. A. (1977). Business cycle modeling without pretending to have too much a priori economic theory. New methods in business cycle research, 1, 145-168.
Stock, J.H., and M.W. Watson (2002b), “Macroeconomic Forecasting Using Diffusion Indexes,” Journal of Business and Economic Statistics, 20, 147-162.
Stock, J.H., and M.W. Watson, (2002a), “Forecasting Using Principal Components from a Large Number of Predictors,” Journal of the American Statistical Association, 97, 1167-1179.
Stock, J.H., and M.W. Watson. (2011). Dynamic factor models. Oxford handbook on economic forecasting, 2011.
_||_
Pourbabagol, Hamzah, Niri, Mohammad Hossein. (2013). The application of factor analysis in the combined model of fuzzy DEA with Markowitz model in determining the portfolio of the most efficient companies in Tehran Stock Exchange. Financial Knowledge of Securities Analysis, 7(24), 117-145.
Demirchi; Fatima. (1389). Optimizing the investment portfolio using conditional value at risk (CVaR) criteria in Tehran Stock Exchange. Master's Thesis of Business Administration, Financial Management, Al-Zahra University, unpublished.
Peshti river guide; Fereydoun, Kandahari; Sharara (2014). Estimation of the value at risk based on the limitation on the performance evaluation of active portfolio management in Tehran Stock Exchange, Financial Engineering and Securities Management Research Quarterly, Volume 6, Number 24.
Mokhtarzadeh, Nima, Karamet, Shapour. (2014). Providing a model for risk analysis of strategic and technological alliances. Innovation Management, Volume 4, Number 3. pp. 119-140.
Nikumram, Hashem and Zamardian, Gholamreza. (2013). Investigating the explanatory power of neural network models in measuring the amount of value at risk. Financial engineering and securities management, 5(19), 19-38
Barigozzi, M., & Hallin, M. (2017). Generalized dynamic factor models and volatilities: estimation and forecasting. Journal of Econometrics, 201(2), 307-321.
Chulia, H., Guillen, M., & Uribe, J. M. (2016). Modeling longevity risk with generalized dynamic factor models and vine-copulae. ASTIN Bulletin: The Journal of the IAA, 46(1), 165-190.
Chuliá, H., Guillén, M., & Uribe, J. M. (2017). Measuring uncertainty in the stock market. International Review of Economics & Finance, 48, 18-33.
Forni, M., & Lippi, M. (2001). The generalized dynamic factor model: representation theory. Econometric theory, 17(6), 1113-1141.
Forni, M., & Reichlin, L. (1998). Let's get real: a factor analytical approach to disaggregated business cycle dynamics. The Review of Economic Studies, 65(3), 453-473.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. Review of economics and statistics, 82(4), 540-554.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2004). The generalized dynamic factor model consistency and rates. Journal of Econometrics, 119(2), 231-255.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830-840.
Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2015). Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. Journal of econometrics, 185(2), 359-371.
Gao, Q., & Hu, C. (2009). Dynamic mortality factor model with conditional heteroskedasticity. Insurance: Mathematics and Economics, 45(3), 410-423.
Gkillas, K., Tsagkanos, A., & Vortelinos, D. I. (2019). Integration and risk contagion in financial crises: Evidence from international stock markets. Journal of Business Research, 104, 350-365.
Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603-617.
Hallin, M., Mathias, C., Pirotte, H., & Veredas, D. (2011). Market liquidity as dynamic factors. Journal of econometrics, 163(1), 42-50.
Jin, X., & De Simone, F. D. A. N. (2014). Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach. Journal of Financial Stability, 14, 81-101.
Nieuwenhuyze, C. V. (2005). A Generalized Dynamic Factor Model for the Belgian Economy. Journal of Business Cycle Measurement and Analysis, 2005(2), 213-247.
Nieuwenhuyze, C. V. (2006). A generalized dynamic factor model for the Belgian economy-Useful business cycle indicators and GDP growth forecasts. National Bank of Belgium Working Paper, (80).
Sargent, T. J., & Sims, C. A. (1977). Business cycle modeling without pretending to have too much a priori economic theory. New methods in business cycle research, 1, 145-168.
Stock, J.H., and M.W. Watson (2002b), “Macroeconomic Forecasting Using Diffusion Indices,” Journal of Business and Economic Statistics, 20, 147-162.
Stock, J.H., and M.W. Watson, (2002a), “Forecasting Using Principal Components from a Large Number of Predictors,” Journal of the American Statistical Association, 97, 1167-1179.
Stock, J.H., and M.W. Watson. (2011). Dynamic factor models. Oxford handbook on economic forecasting, 2011.