فهرست مقالات ابمان ابراهیم زاده


  • مقاله

    1 - Study the effect of the friction stir process on the microstructure and mechanical behavior of the AZ31 as-cast alloy joint
    Journal of Advanced Materials and Processing , شماره 2 , سال 7 , بهار 2019
    The AZ31 magnesium alloy has a significant potential for the aircraft manufacturing industry due to its low density and proper mechanical properties. In this research, the Gas Tungsten Arc Welding (GTAW) process was used by applying pulse current for the AZ31 as-cast al چکیده کامل
    The AZ31 magnesium alloy has a significant potential for the aircraft manufacturing industry due to its low density and proper mechanical properties. In this research, the Gas Tungsten Arc Welding (GTAW) process was used by applying pulse current for the AZ31 as-cast alloy joint. The GTAW process is conducted by pulse time, voltage, and equivalent current of 0.5 sec, 12 V, 187.5 A, respectively. Then, the surface of welded joint by the GTAW was improved using friction stir processing (FSP). The effect of FSP on the microstructure and mechanical properties of this joint was examined. Subsequently, the friction stir processing was performed with a tool rotating speed of 1120 rpm, the tool traverse speed of 50 mm/min in two passes behind and on the welding line. The microstructure and fracture sections of the prepared samples were respectively examined by optical microscopy and scanning electron microscopy (SEM). The mechanical behavior of the samples was studied using tensile, micro-hardness and impact tests. According to the results, the microstructure of the welding region of the TIG sample included highly fine homogeneous and coaxial grains. After the friction stir process (FSP), the microstructure transformed into fine and structural grains in the form of a ring-shaped morphology. The FSP resulted in a 23% improvement in the tensile strength of the TIG sample. Also, the impact energy of the welding metal increased by about 37%. In general, the mechanical behavior of the joint was improved after applying the friction stir process. پرونده مقاله

  • مقاله

    2 - Investigation on High Temperature Wear Resistance of Cryotreated Hot Work Tool Steel
    Journal of Advanced Materials and Processing , شماره 4 , سال 7 , تابستان 2019
    Deep sub-zero treatment is a complementary operation performed on all types of tool steels, carbonized and high-speed steels to improve wear resistance and hardness. Among these tool steels, H13 is a hot work tool steel that have an extended application in industry as a چکیده کامل
    Deep sub-zero treatment is a complementary operation performed on all types of tool steels, carbonized and high-speed steels to improve wear resistance and hardness. Among these tool steels, H13 is a hot work tool steel that have an extended application in industry as a hot deforming tool. This paper investigates the wear behavior of deep cryogenic treated H13 hot work steel at operating temperature. Two quench-tempered and quench-subzero-tempered samples are compared. The microstructures of the specimens were determined by scanning electron microscopy, and the structures were determined by X-ray diffraction. Vickers hardness used for determining hardness after each treatment. The wear test was carried out at 250°C (mold temperature on forging of copper base alloys). Finally, the wear surface was examined by scanning electron microscope equipped with EDS analyzer. The results show that the highest hardness was in quench-subzero-tempered condition which is about 26% higher than the quench-tempered in oil conditions. This is due to the formation of fine, dispersed and uniform precipitates and higher martensite percentage in quench-subzero-tempered sample compared to quench-tempered sample. Quench-subzero-temper operation reduced the residual austenite percentage by 10% and improved the wear properties by 36% at 250° C. Examination of wear surfaces indicates the presence of oxidized surfaces adhered to the wear surface in the form of abrasive particles. These oxide levels were lower in quench-subzero-tempered sample than quench-tempered sample. پرونده مقاله