فهرست مقالات Mohsen Heydari Beni


  • مقاله

    1 - Dynamic Analysis of Carbon Nanotube-Reinforced Multilayer Composite Plates
    International Journal of Advanced Design and Manufacturing Technology , شماره 54 , سال 14 , زمستان 2024
    The paper studied the analysis of vibrations of rectangular carbon nanotube-reinforced composite plates. To this end, a three-layer nanocomposite plate - two layers with the targeted distribution of carbon nanotubes as FG-X at the top and bottom and a layer without an a چکیده کامل
    The paper studied the analysis of vibrations of rectangular carbon nanotube-reinforced composite plates. To this end, a three-layer nanocomposite plate - two layers with the targeted distribution of carbon nanotubes as FG-X at the top and bottom and a layer without an amplifier in the middle of the plate - were analyzed. The governing equations for this problem are based on First-order Shear Deformation Theory (FSDT). The distribution of nanotubes on these plates is as targeted FG-X. The effect of various types of SWCNTs distributions in the direction of thickness on the vibrational behavior of nanocomposite plates was examined. The effective properties of nanocomposite materials Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) were estimated using the rule of mixtures. Detailed parametric studies were performed to determine the effects of the volume fraction of carbon nanotubes and the thickness-to-length ratio of the plate on the natural frequency responses and the shape of the plate mode. The equations obtained in this problem were coded in MATLAB software, the nanocomposite plate was modelled in ABAQUS software, and the comparison of the results obtained from the numerical solution with ABAQUS software showed relatively right consistency with the results obtained from the analytical solution. پرونده مقاله

  • مقاله

    2 - Design and Fabrication of a Composite Energy Absorber
    International Journal of Advanced Design and Manufacturing Technology , شماره 53 , سال 13 , پاییز 2024
    In this paper, the quasi-static test and the damage of the thin-walled composite cylinder were numerically simulated using ABAQUS. Then, a comparison was made between the results of this simulation and those obtained from experimental studies followed by their validatio چکیده کامل
    In this paper, the quasi-static test and the damage of the thin-walled composite cylinder were numerically simulated using ABAQUS. Then, a comparison was made between the results of this simulation and those obtained from experimental studies followed by their validation. In the next step, several parameters affecting the energy absorption rate including outer diameter-to-cylinder height ratio, thickness-to-outer diameter ratio, and angle of damage initiation mechanism were selected. They were optimized by modelling different states in ABAQUS. The number of tests is reduced by the design of experiments using response surface methodology and the optimal specimen is extracted by this software. Finally, optimum adsorbent is fabricated and tested. Considering enhanced energy absorption, increased mean reaction force, and reduced initial maximum force, the optimal design parameters include the inner diameter-to-cylinder height ratio of 0.2, thickness-to-inner diameter ratio of 0.1, and angle of damage initiation mechanism of 45°. پرونده مقاله

  • مقاله

    3 - Numerical and Experimental Static Bending Analysis of Composite Sandwich Panels with Grid-Stiffened Cores Before and After Transverse Impact Loading
    International Journal of Advanced Design and Manufacturing Technology , شماره 58 , سال 15 , زمستان 2024
    Nowadays grid structures are considered as one of the most useful composites because of their various applications. Since grid structures are vulnerable to impact loads, they should be investigated under such loadings. The present paper studies the low-velocity impact l چکیده کامل
    Nowadays grid structures are considered as one of the most useful composites because of their various applications. Since grid structures are vulnerable to impact loads, they should be investigated under such loadings. The present paper studies the low-velocity impact loading of sandwich panels with grid-stiffened cores using both experimental and numerical simulations. In addition to the impact behaviour and the resultant damage of the sandwich panels, the behaviour of these structures under three-point bending was studied before and after the impact loading. The results were provided for impact and bending loadings separately. Then the effect of impact loadings on bending strength was investigated and it was found that the impact loading decreases the bending strength. A consistency between numerical and experimental results was also observed, which confirms the applicability of the Finite Element Method (FEM) in simulating the behaviour of such structures under impact and bending loads, while saving lots of time, efforts and costs. پرونده مقاله

  • مقاله

    4 - Assessment of Third‌-order Shear Deformation Graphene Nanoplate Response under Static Loading Using Modified Couple Stress Theory
    Journal of Modern Processes in Manufacturing and Production , شماره 1 , سال 11 , زمستان 2022
    In this paper bending and buckling characteristics of third-order shear, and deformation nanoplates were investigated using the modified couple stress theory and Navier type solution. It can be useful for designing and manufacturing micro-electromechanical and nano-elec چکیده کامل
    In this paper bending and buckling characteristics of third-order shear, and deformation nanoplates were investigated using the modified couple stress theory and Navier type solution. It can be useful for designing and manufacturing micro-electromechanical and nano-electromechanical systems. The modified couple stress theory was applied to provide the possibility of considering the effects of small scales that have only one material length scale parameter. In this theory, the strain energy density is a function of the strain tensor components, curvature tensor, stress tensor, and the symmetric part of the couple stress tensor. After obtaining the strain energy, external work, and buckling equations, the Hamilton principle is employed to derive the governing equations. Furthermore, by applying boundary and loading conditions in the governing equations, the bending and buckling of a third-order shear deformation nanoplate with simply-supported bearings are obtained and the Navier’s solution is used to solve the equations. The results indicate that the third-order nanoplate subjected to sinusoidal loading yields smaller values of dimensionless bending than it does while subjected to uniform surface traction. It was also found that by increasing the length to thickness ratio, the value of the dimensionless bending of nanoplate decreases but by increasing the aspect ratio of the plate, this value increases. Furthermore, it was shown that the critical buckling load of the third-order nanoplate under uniaxial loading increases by increasing the ratio of the length scale parameter to the thickness of the nanoplate but it decreases by increasing the length to thickness ratio of the nanoplate. پرونده مقاله