پیش تیمار بذر کنجد (Sesamum indicum L) با پرولیـن و اثربخشی آن بر جوانه زنی در دماهای متفاوت
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعینصیبه توکلی 1 , علی عبادی 2 , حوریه توکلی 3 , پیام تیزفهم 4
1 - دانشجوی دکتری رشته فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران
2 - دانشیار، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران
3 - دانشجوی دکتری رشته فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران
4 - دانشجوی کارشناسی ارشد رشته زراعت دانشگاه محقق اردبیلی
کلید واژه: پروتئین, پرولین, کنجد, آنزیم های آنتی اکسیدان, شاخص های جوانه زنی بذر,
چکیده مقاله :
به منظور بررسی تاثیر پرولین و دما بر میزان اسمولیت ها، میــزان آنزیم های آنتی اکسیدان و شــاخص های جوانه زنی کنجد، آزمایشی در سال 1393 در آزمایشگاه دانشکده علوم کشاورزی دانشگاه محقق اردبیلی به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار انجام گرفت. تیمارهای آزمایشی شامل سه سطح پرولین (صفر، 5، 10 میلی مولار) و دماهای مختلف جوانه زنی (15، 25، 35 درجه سلسیوس) بودند. نتایج آزمایش نشان دهنده تاثیر مثبت پرولین بر شاخص های جوانه زنی، آنزیم های آنتی اکسیدان، پرولین، پروتئین و تحرک ذخایر غذایی بود. به طوری که، کاربرد خارجی (اگزوژنیک) پرولین منجر به افزایش میزان این اسمولیت در گیاهچه ها گردید. همچنین، دماهای 15 و 35 درجه سلسیوس نسبت به دمای 25 درجه سلسیوس منجر به تولید پرولین کمتری شدند. میزان آنزیم پراکسیداز نیز در دمای 25 درجه سلسیوس کمتر از دماهای 15 و 35 درجه سلسیوس برآورد شد و افزایش پرولین منجر به افزایش میزان این آنزیم در دماهای مـورد بررسی گردید. در دمای 25 درجه سلسیوس با کاربــرد 10 میلی مولار پرولین بیشترین میزان کاتالاز و پلی فنل اکسیداز مشاهده گردید. همچنین، میزان این آنزیم ها در دماهای 15 و 35 درجه سلسیوس نسبت به دمای 25 درجه سلسیوس کاهش نشان داد. با توجه به افزایش کارآیی ذخایر غذایی و شاخص قدرت بذر، درصد و سرعت جوانه زنی، میزان پرولین، پروتئین و آنزیم های آنتی اکسیدان در اثر کاربرد پرولین به نظر می رسد که پیش تیمار بذر با پرولین می تواند یکی از راهکارهای مناسب برای جوانه زنی بهتر آن تحت شرایط تغییرات دما باشد.
To study the effects of proline and temperature on the rates of antioxidant enzymes and germination index, a factorial laboratory experiment based on completely randomized design was conducted with three replications at the Mohaghegh Ardabili University in 2014. Treatments cinsisted of three levels of proline (0, 5 and 10 mM) and different temperature regimes (15, 25 and 35°C). Results showed that proline significantly increased germination index, rates of antioxidant enzymes, proline, protein and mobility of food reserves. Exogenous application of proline increased assimilates in the seedlings. However, proline synthesis was decreased at temrature regimes of 15 and35°C as compared to 25 °C. Peroxidase enzyme rate at 25°C was lowere than of 15 and 35 °C and addition of proline increased levels of enzymes at these temperature regemes. Application of 10 mM proline at 25 °C showed the highest activity of catalase and polyphenol oxidase rates. However, rates of these enzymes at 15 and 35°C decreased as compared with that of 25°C. The length of radicle increased at all temperatures regemes and the length of plumule increased by proline, but reduced at temperatures of 15 and 35°C. According to the positive effects of proline on food reserves and seed vigor index, speed and rate of germination, proline, protein and antioxidant enzymes contents of seedlings, it seems that pretreatment of seeds with proline is an appropriate method for better seed germination attributs under these temperatures regemes.
Abdul-Baki, A.A., and J.D. Anderson. 1973. Vigour determination in soybean by multiple criteria. Crop Science. 13: 630-633.
Aggarwal, M., S. Sharma, N. Kaur, D. Pathania, K. Bhandhari, N. Kaushal, R. Kaur, K. Singh, A. Srivastava, and H. Nayyar. 2011. Exogenous proline application reduces phytotoxic effects of selenium by minimizing oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biological Trace Element Research. 140:354–367
Akita, A.S., and G.S. Cabuslay. 1990. Physiological basis of differential response to salinity in rice cultivars. Plant Soil. 123: 227-294.
Aldesuquy. H.S., S.A. Abo-Hamed., M.A. Abbas, and A.H. Elhakem. 2012. Role of glycine betaine and salicylic acid in improving growth vigour and physiological aspects of droughted wheat cultivars. Journal of Stress Physiology & Biochemistry. 8(1): 149-171
Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55:373–99.
Arrigo, A.P. 1998. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biological Chemistry. 379, 19–26.
Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59: 206–216.
Banu, M.N.A., M.A. Hoque., M. Watanabe-Sugimoto., K. Matsuoka, Y. Nakamura, and Y. Shimoishi. 2009. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology. 166: 146–56.
Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free prolin for water stress studies. Plant Soil. 39: 205-208.
Bewley J.D., and M, Black. 1983. Biochemistry of germination and growth. In: Bewley J. D. and M. Black. (eds.), Physiology and biochemistry of seeds in relation to germination, Vol 1.-Springer-Verlag, New York
Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry. 72: 248-254.
Bray, C.M., P.A. Davision, M. Ashraf, and R.M. Taylor. 1989. Biochemical changes during osmopriming of leek seed. Annal Botany. 63: 185-193.
Cha-Um, S., and C. Kirdmanee. 2010. Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry. 34: 517-527
Chen, C., and M.B. Dickman. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences of USA. 102: 3459–64.
Chen, C., S. Wanduragala, DF. Becker, and MB. Dickman, 2006. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular prolinelevels. Applied and Environmental Microbiology. 72: 4001–6.
Deivanai, S., R. Xavier, V. Vinod, K. Timalata, and O.F. Lim. 2011. Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. Journal of Stress Physiology & Biochemistry. 4(4): 157-174
Demiral, T., and I. Turkan. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology. 161:1089–100.
Desikan, R., S.A.H. Mackerness, J.T. Hancock, and S.J. Neill. 2001. Regulation of the arabidopsis transcriptome by oxidative stress. Plant Physiology. 127: 159-172.
Diamant, S., N. Eliahu, D. Rosenthal, and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. The Journal of Biological Chemistry. 276: 39586–39591.
Ekis, H., and A. Yilmaz, 2003. Determination of the salt tolerance of some barely genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry. 27:257-260
Hamalata, S., and L. Chafooranissa. 2007. Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chemistry. 105: 1076- 1085.
Hasegawa, P.M., R.A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology. 51:463–99.
Heuer, B. 2003. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science. 165: 693-699
Hong, Z., K. Lakkineni, Z. Zhang, and D.P.S. Verma. 2000. Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology. 122:1129–36.
Hoque, M.A., E. Okuma, M.N.A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology. 164:553–61.
Hua, B., and W.Y. Guo. 2002. Effect of exogenous proline on SOD and POD activity of soyabean callus under salt stress. Acta Agriculturae Boreali-Sinica. 17, 37–40.
ISTA. 2010. International Seed Testing Association, Zurich, Switzerland.
Izadi Darbandi, A., M. Mohammadian, A. Yang, and H. Zarghani. 2012. Effect of temperature and salt on germination parameters and seed growth in Seaman (Sesamum indicum) population. Iran Journal of Field Crop Research. 10(2): 335-345. (In Persian).
Kar, M., and D. Mishra. 1976. Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology. 578: 315-319.
Khedr, A.H.A., M.A. Abbas, A.A.A. Wahid, W.P. Quick, and G.M. Abogadallah. 2003. Proline induces the expression of salt-stress- responsive protein sand may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany. 54: 2553–62.
Maestri, E., N, Klueva, C. Perrotta, M. Gulli, H.T. Hguyen, and N. Marmiroli. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology. 48: 667-81.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science. 7: 405-410
Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Science. 9(10): 490-498.
Nollen, E.A.A., and R.I. Morimoto. 2002. Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. Journal of Cell Science. 115: 2809–2816.
Okuma, E., Y. Murakami, Y. Shimoishi, M. Tada, and Y. Murata. 2004. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition. 50:1301–5.
Okuma, E., K. Soeda, M. Fukuda, M. Tada, and Y. Murata. 2002. Negative correlation between the ratio K+ to Na+ and proline accumulation in tobacco suspension cells. Soil Science and Plant Nutrition. 48:753–7.
Okuma, E., K. Soeda, M. Tada, and Y. Murata. 2000. Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Science and Plant Nutrition. 46: 257–263.
Panchuk, I.I., R.A. Volkov, and F. Schoffl. 2002. Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in arabidopsis. Plant Physiology. 129: 838–853.
Pessarakli, M. 2001. Handbook of plant and crop physiology. Second Edition Revised and Expanded. Marcel Dekker, Inc.997 P.
Quiroga, M., C. Guerrero, M.A. Botella, A. Barcelo, I. Amaya, M.I. Medina, F.J. Alonso, S.M. De Forchetti, H. Tigier, and V. Valpuesta. 2000. A tomato peroxidase involved in the synthesis of lignin and sobering. Plant Physiology. 122: 1119-1127.
Rabie, B., and M. Bayat. 2009. Study parameters of seed germination and seedling growth canola cultivars (Brassica napus L.) by using seed vigor tests. Iran Journal of Crop Science. 40(1): 93-104 (In Persian).
Rezaei, M., M. Sedghi, and R. Seyed Sharifi. 2014. Effect of seed priming on reserve mobilization of pot marigold (Calendula officinalis L.) seeds under salinity stress. Research of Crop Ecosystem. 1(2): 67-74 (In Persian)
Sairam, R.K., K.V. Rao, and G.C. Srivastava, 2002. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science. 163: 1037-1046.
Scott, S.J., R.A. Jones, and W.A. Williams. 1984. Review of data analysis methods for seed germination. Crop Science. 24: 1192-1199.
Sedghi, M., A. Nemati, and B. Esmaielpour. 2010. Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates Journal of Food and Agriculture. 22(2): 130-139.
Shah, K., and R.S. Dubey. 1998. Effect of cadmium on proline accumulation and ribonuclease activity in rice seed- lings: role of proline as possible enzyme protectant. Biologia Plantarum. 40:121–30.
Shinozaki, K., and K. Yamaguchi-Shinozaki. 1999. Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co. 180p
Sudhakar, C., A. Lakshmi, and K.S. Giridara. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 167:613-619
Turkan, I. 2011. Plant responses to drought and salinity stress, development in a post-Genomic era. Advances in Botanical Research. 593p.
Walters, C. 1998. Understanding the mechanisms and kinetics of seed aging. Seed Science Research. 8: 223–244.
Weise, E.A. 2000. Oil seed crops. Blackwell Sci. Ltd Oxford, UK. 364 P.
Yan, H., L.Z. Gang, C.Y. Zhao, and W.Y. Guo. 2000. Effects of exogenous proline on the physiology of soybean plantlets regenerated from embryos in vitro and on the ultra structure of their mitochondria under NaCl stress. Soybean Science. 19, 314–319.
Zand, B., A. Soroushzadeh, F. Ghanati, and F. Moradi. 2010. Effect of foliar application of zinc (Zn) and auxin (IBA) on the activity of some antioxidant enzymes in the corn. Iran Journal of Plant Biology. 2:48-35.(In Persian).
Zeinati, E., A. Soltani, S. Galeshi, and S.J. Sadati. 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Electronic Journal of Crop Production. 3 (3): 23-42.