Redened (anti) fuzzy BM-algebras
محورهای موضوعی : Applied Mathematics
1 - Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran.
کلید واژه: non-quasi coincident, (α, β)*-fuzzy sub-algebra, BM-algebras,
چکیده مقاله :
In this paper by using the notiαon of anti fuzzy points and its besideness to andnon-quasi-coincidence with a fuzzy set the concepts of an anti fuzzy subalgebrasin BM-algebras are generalized and their inter-relations and related propertiesare investigated.
In this paper by using the notiαon of anti fuzzy points and its besideness to andnon-quasi-coincidence with a fuzzy set the concepts of an anti fuzzy subalgebrasin BM-algebras are generalized and their inter-relations and related propertiesare investigated.
[1] S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classication of BCI-algebras,
Math. Jap. 34 (1989), 865{876.
[2] S. K. Bhakat and P. Das, (2;2 _ q)-fuzzy subgroup,Fuzzy Sets and Systems 80
(1996), 359{368.
[3] A. Borumand Saeid, Fuzzy BM-algebras, Indian J. Sci. Technol. 3 (2010), 523{
529.
[4] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313{320.
[5] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659{
661.
[6] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math.
Japonica 23 (1978), 1{26.
[7] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125{130.
[8] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japo. Online e-2006
(2006), 215{221.
[9] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in
Smarandache setting, Honam Math. J. 26 (2004), 471{481.
[10] Y. B. Jun, On (; )-fuzzy subalgebras of BCI=BCK-algebras, Bull. Korean
Math. Soc. 42 (2005), 703{711.
[11] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica
Online 1 (1998), 347{354.
[12] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul, 1994.
[13] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19{26.
[14] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21{29.
[15] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-
algebras, Int. Math. J. 2 (2002), 215{219.
[16] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512-517.
[17] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006),
301{306.
[18] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jap.
Online e-2005 (2005), 49{53.
[19] L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338{353.