Unleashing the power of garlic polyphenols: Insights into extraction, identification, structural characteristics and bioactivities
محورهای موضوعی : Medicinal and Herbal PlantsMonika Monika 1 , Sanjeev Gupta 2
1 - Department of Zoology, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
2 - Cell Biology Lab, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
کلید واژه: Allium sativum, Bioactivities, Biological activity, Extraction, Garlic polyphenols, Organ-protective, Structural characteristics,
چکیده مقاله :
Garlic has been well recognized as a nutrient-rich food and conventional remedy in history. One of the key effective components of garlic is its polyphenols, which exhibit various bioactivities, including anti-cancerous, immune enhancing, and antioxidant properties. Garlic polyphenols consist of flavonoids, such as quercetin, kaempferol, and apigenin, and phenolic acids, including caffeic acid, ferulic acid, and gallic acid. Given its significant marketing potential and development prospects, garlic polyphenols have garnered substantial interest from researchers worldwide. This review is directed to provide comprehensive and up-to-date information on the extraction, identification, structural characteristics, and bioactivities of garlic polyphenols. Further, it presented compelling evidence to use polyphenols as medicinal foods.
Garlic has been well recognized as a nutrient-rich food and conventional remedy in history. One of the key effective components of garlic is its polyphenols, which exhibit various bioactivities, including anti-cancerous, immune enhancing, and antioxidant properties. Garlic polyphenols consist of flavonoids, such as quercetin, kaempferol, and apigenin, and phenolic acids, including caffeic acid, ferulic acid, and gallic acid. Given its significant marketing potential and development prospects, garlic polyphenols have garnered substantial interest from researchers worldwide. This review is directed to provide comprehensive and up-to-date information on the extraction, identification, structural characteristics, and bioactivities of garlic polyphenols. Further, it presented compelling evidence to use polyphenols as medicinal foods.
Agarwal, K.C., 1996. Therapeutic actions of garlic constituents. Med. Res. Rev. 16(1), 111-124.
Ahmad, R., Ahmad, N., Riaz, M., Al-Tarouti, M., Aloufi, F., AlDarwish, A., Alalaq, B., Alhanfoush, B., Khan, Z., 2020. Optimization of extraction and quantification technique for phenolics content of garlic (Allium sativum): An application for comparative phytochemical evaluation based on cultivar origin. Biomed. Chromatogr. 34(11), e4942.
AM Abdel-Rahman, I., E Raslan, A., Dawy, A., Wail, A., Ahmed, F., Hany, K., AE Allam, A., 2022. Cymbopogon schoenanthus (L.) Spreng: A comprehensive review on phytochemical and pharmacological biodiversity. Trends Phytochem. Res. 6(4), 259-281.
Ansary, J., Forbes-Hernández, T.Y., Gil, E., Cianciosi, D., Zhang, J., Elexpuru-Zabaleta, M., Simal-Gandara, J., Giampieri, F., Battino, M., 2020. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants 9(7), 619.
Azzini, E., Durazzo, A., Foddai, M.S., Temperini, O., Venneria, E., Valentini, S., Maiani, G., 2014. Phytochemicals content in Italian garlic bulb (Allium sativum L.) varieties. J. Food Res. 3(4), 26.
Badhani, B., Sharma, N., Kakkar, R., 2015. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5(35), 27540-27557.
Balaga, V.K.R., Pradhan, A., Thapa, R., Patel, N., Mishra, R., Singla, N., 2023. Morin: A comprehensive review on its versatile biological activity and associated therapeutic potential in treating cancers. Mod. Chin. Med. 7, 100264.
Bangar, S.P., Chaudhary, V., Sharma, N., Bansal, V., Ozogul, F., Lorenzo, J.M., 2022. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 1-25.
Berginc, K., Milisav, I., Kristl, A., 2010. Garlic flavonoids and organosulfur compounds: Impact on the hepatic pharmacokinetics of saquinavir and darunavir. Drug Metab. Pharmacokinet. 25(6), 521-530.
Bernatova, I., 2018. Biological activities of (−)-epicatechin and (−)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv. 36(3), 666-681.
Bhat, K.P., Kosmeder, J.W., Pezzuto, J.M., 2001. Biological effects of resveratrol. Antioxid. Redox. Signal. 3(6), 1041-1064.
Cao, Y., Himmeldirk, K.B., Qian, Y., Ren, Y., Malki, A., Chen, X., 2014. Biological and biomedical functions of penta-O-galloyl-D-glucose and its derivatives. J. Nat. Med. 68(3), 465-472.
Cavalcanti, V.P., Aazza, S., Bertolucci, S.K.V., Rocha, J.P.M., Coelho, A.D., Oliveira, A.J.M., Mendes, L.C., Pereira, M.M.A., Morais, L.C., Forim, M.R., Pasqual, M., Dória, J., 2021. Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules 26(19), 6026.
Cinkmanis, I., Augšpole, I., Sivicka, I., Vucāne, S., 2022. Evaluation of the phenolic profile of bear’s garlic (L.) leaves. Proc. Latv. Acad. Sci B. 76(4), 512-516.
Ciric, A., Krajnc, B., Heath, D., Ogrinc, N., 2020. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food. Chem. Toxicol. 135, 110976.
Dias, M.C., Pinto, D.C.G.A., Silva, A.M.S., 2021. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26(17), 5377.
Durairaj, R.B., 2005. Resorcinol: Chemistry, Technology and Applications. SSBM.
Eidi, A., Eidi, M., Esmaeili, E., 2006. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13(9-10), 624-629.
Eng, Q.Y., Thanikachalam, P.V., Ramamurthy, S., 2018. Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol. 210, 296-310.
Fan, F.Y., Sang, L.X., Jiang, M., 2017. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22(3), 484.
Farag, M.A., Ali, S.E., Hodaya, R.H., El-Seedi, H.R., Sultani, H.N., Laub, A., Eissa, T.F., Abou-Zaid, F.O.F., Wessjohann, L.A., 2017. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules 22(5), 761.
Fratianni, F., Riccardi, R., Spigno, P., Ombra, M.N., Cozzolino, A., Tremonte, P., Coppola, R., Nazzaro, F., 2016. Biochemical characterization and antimicrobial and antifungal activity of two endemic varieties of garlic (Allium sativum L.) of the Campania region, Southern Italy. J. Med. Food. 19(7), 686-691.
Ganeshpurkar, A., Saluja, A., 2020. The pharmacological potential of catechin. Indian J. Biochem. Biophys. 57(5), 505-511.
Gardner, C.D., Lawson, L.D., Block, E., Chatterjee, L.M., Kiazand, A., Balise, R.R., Kraemer, H.C., 2007. Effect of raw garlic vs commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia: A randomized clinical trial. Arch. Intern. Med. 167(4), 346-353.
Gorinstein, S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Drzewiecki, J., Cvikrová, M., Martincová, O., Katrich, E., Trakhtenberg, S., 2008. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 56(12), 4418-4426.
Gu, C., Howell, K., Dunshea, F.R., Suleria, H.A.R., 2019. LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 8(9), 405.
Gullón, B., Lú-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G., 2017. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food. Sci. Technol. 67, 220-235.
Hu, B., Hu, H., Pu, C., Wei, Z., Wang, Q., Kuang, H., 2022. Three new flavonoid glycosides from the aerial parts of Allium sativum L. and their anti-platelet aggregation assessment. Nat. Prod. Res. 36(23), 5940-5949.
Jiang, R.W., Lau, K.M., Hon, P.M., Mak, T.C., Woo, K.S., Fung, K.P., 2005. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 12(2), 237-246.
Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S.S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M.H., Bishayee, A., 2019. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J. Basic Med. Sci. 22(3), 225-237.
Karami, A., Fakhri, S., Kooshki, L., Khan, H., 2022. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits. Molecules 27(19), 6474.
Kaur, J., Gulati, M., Singh, S.K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Arshad, M.F., Porwal, O., Jha, N.K., Chaitanya, M.V.N.L., Chellappan, D.K., Gupta, G., Gupta, P.K., Dua, K., Khursheed, R., Awasthi, A., Corrie, L., 2022. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci. Technol. 122, 187-200.
Kazeminia, M., Mehrabi, A., Mahmoudi, R., 2022. Chemical composition, biological activities, and nutritional application of Asteraceae family herbs: A systematic review. Trends Phytochem. Res. 6(3), 187-213.
Khaled, R., 2020. Biological activities of isorhamnetin: A review. Pla Sci. 3(5), 78-81.
Khan, A.K., Rashid, R., Fatima, N., Mahmood, S., Mir, S., Khan, S., Jabeen, N., Murtaza, G., 2015. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 72(4), 643-650.
Khanbabaee, K., Van Ree, T., 2001. Tannins: Classification and definition. Nat. Prod. Rep. 18(6), 641-649.
Kim, J.K., Park, S.U., 2019. A recent overview on the biological and pharmacological activities of ferulic acid. Excli J. 18, 132-138.
Kim, J.S., Kang, O.J., Gweon, O.C., 2013. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods. 5(1), 80-86.
Kim, S., Kim, D.B., Jin, W., Park, J., Yoon, W., Lee, Y., Yoo, M., 2018. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat. Prod. Res. 32(10), 1193-1197.
Kolodziejczyk-Czepas, J., 2012. Trifolium species-derived substances and extracts-biological activity and prospects for medicinal applications. J. Ethnopharmacol. 143(1), 14-23.
Kovarovič, J., Bystrická, J., Vollmannová, A., Tóth, T., Brindza, J., 2019. Biologically valuable substances in garlic (Allium sativum L.)-A review. J. Cent. Eur. Agric. 20(1), 292-304.
Krstić, M., Teslić, N., Bošković, P., Obradović, D., Zeković, Z., Milić, A., Pavlić, B., 2023. Isolation of garlic bioactives by pressurized liquid and subcritical water extraction. Molecules 28(1), 369.
Krupkova, O., Ferguson, S.J., Wuertz-Kozak, K., 2016. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J. Nutr. Biochem. 37, 1-12.
Kumar, N., Goel, N., 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 24, e00370.
Leri, M., Scuto, M., Ontario, M.L., Calabrese, V., Calabrese, E.J., Bucciantini, M., Stefani, M., 2020. Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Mol. Sci. 21(4), 1250.
Li, H., Deng, Z., Wu, T., Liu, R., Loewen, S., Tsao, R., 2012. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 130(4), 928-936.
Liang, Z., Liang, H., Guo, Y., Yang, D., 2021. Cyanidin 3-O-galactoside: A natural compound with multiple health benefits. Int. J. Mol. Sci. 22(5), 2261.
Lima, V.N., Oliveira-Tintino, C.D., Santos, E.S., Morais, L.P., Tintino, S.R., Freitas, T.S., Geraldo, Y.S., Pereira, R.L., Cruz, R.P., Menezes, I.R., Coutinho, H.D., 2016. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 99, 56-61.
Long, Z., Xiang, W., He, Q., Xiao, W., Wei, H., Li, H., Guo, H., Chen, Y., Yuan, M., Yuan, X., Zeng, L., Yang, K., Deng, Y., Huang, Z., 2023. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front. Immunol. 14, 1024120.
Ma, L., Zhao, C., Chen, J., Zheng, J., 2021. Corrigendum: Effects of anaerobic fermentation on black garlic extract by Lactobacillus: Changes in flavor and functional components. Front. Nutr. 8, 745272.
MacRae, W.D., Towers, G.H.N., 1984. Biological activities of lignans. Phytochemistry 23(6), 1207-1220.
Martins, N., Petropoulos, S., Ferreira, I.C., 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 211, 41-50.
Masella, R., Santangelo, C., D’archivio, M., Li Volti, G., Giovannini, C., Galvano, F., 2012. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Curr. Med. Chem. 19(18), 2901-2917.
Materska, M., 2008. Quercetin and its derivatives: Chemical structure and bioactivity-A review. Pol. J. Food Nutr. Sci. 58(4).
Milner, J.A., 1996. Garlic: Its anticarcinogenic and antiumorigenic properties. Nutr. Rev. 54(11), 82-86.
Mohammadhosseini, M., Jeszka-Skowron, M., 2023. A systematic review on the ethnobotany, essential oils, bioactive compounds, and biological activities of Tanacetum species. Trends Phytochem. Res. 7(1), 1-29.
Musa, K.H., Abdullah, A., Al-Haiqi, A., 2016. Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chem. 194, 705-711.
Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J.Y., Chung, I.M., 2014. Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian J. Chem. 26(3), 897-902.
Nasser, M.I., Zhu, S., Chen, C., Zhao, M., Huang, H., Zhu, P., 2020. A comprehensive review on schisandrin B and its biological properties. Oxid. Med. Cell Longev. 2020, 2172740.
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., XiaoHui, Z., 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 97, 67-74.
Nguyen, T.T.H., Jung, J.H., Kim, M.K., Lim, S., Choi, J.M., Chung, B., Kim, D.W., Kim, D., 2021. The inhibitory effects of plant derivate polyphenols on the main protease of SARS coronavirus 2 and their structure-activity relationship. Molecules 26(7).
Nićiforović, N., Abramovič, H., 2014. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 13(1), 34-51.
Nile, A., Nile, S.H., Shin, J., Park, G., Oh, J.W., 2021. Quercetin-3-glucoside extracted from apple pomace induces cell cycle arrest and apoptosis by increasing intracellular ROS levels. Int. J. Mol. Sci. 22(19), 10749.
Panat, N.A., Amrute, B.K., Bhattu, S., Haram, S.K., Sharma, G.K., Ghaskadbi, S.S., 2015. Antioxidant profiling of C3 quercetin glycosides: Quercitrin, quercetin 3-β-D-glucoside and quercetin 3-O-(6”-O-malonyl)-β-D-glucoside in cell free environment. Free Radic. Antioxid. 5(2), 90-100.
Pandey, K.B., Rizvi, S.I., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2(5), 270-278.
Park, K.S., Chong, Y., Kim, M.K., 2016. Myricetin: Biological activity related to human health. Appl. Biol. Chem. 59(2), 259-269.
Parvu, M., Toiu, A., Vlase, L., Alina Parvu E., 2010. Determination of some polyphenolic compounds from Allium species by HPLC-UV-MS. Nat. Prod. Res. 24(14), 1318-1324.
Pazyar, N., Feily, A., 2011. Garlic in dermatology. Dermatol. Rep. 3(1), e4.
Pei, K., Ou, J., Huang, J., Ou, S., 2016. p‐Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 96(9), 2952-2962.
Phan, A.D.T., Netzel, G., Chhim, P., Netzel, M.E., Sultanbawa, Y., 2019. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars. Foods 8(9), 358.
Pilkington, J.L., Preston, C., Gomes, R.L., 2014. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crops Prod. 58, 15-24.
Prakash, M., Basavaraj, B.V., Chidambara Murthy, K.N., 2019. Biological functions of epicatechin: Plant cell to human cell health. J. Funct. Foods. 52, 14-24.
Quideau, S., Deffieux, D., Douat‐Casassus, C., Pouységu, L., 2011. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem. Int. Ed. Engl. 50(3), 586-621.
Razavi, S.M., Zahri, S., Zarrini, G., Nazemiyeh, H., Mohammadi, S., 2009. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Russ. J. Bioorg. Chem. 35, 376-378.
Recinella, L., Gorica, E., Chiavaroli, A., Fraschetti, C., Filippi, A., Cesa, S., Cairone, F., Martelli, A., Calderone, V., Veschi, S., Lanuti, P., Cama, A., Orlando, G., Ferrante, C., Menghini, L., Di Simone, S.C., Acquaviva, A., Libero, M.L., Nilofar, Leone, S., 2022. Anti-inflammatory and antioxidant effects induced by Allium sativum L. extracts on an ex vivo experimental model of ulcerative colitis. Foods 11(22), 3559.
Reveglia, P., Masi, M., Evidente, A., 2020. Melleins-Intriguing natural compounds. Biomolecules 10(5), 772.
Romilda, A., Rajesh, N., 2016. Optimization of extraction of bioactive compounds from medicinal herbs using response surface methodology. Int. Proc. Chem. Biol. Environ. Eng. 99, 76-85.
Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S.M., Salem, M.A., Cho, W.C., 2020. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 5(20), 11849-11872.
Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., Martins, N., 2019. The therapeutic potential of apigenin. Int. J. Mol. Sci. 20(6), 1305.
Sari, D.R.T., Cairns, J.R.K., Safitri, A., Fatchiyah, F., 2019. Virtual prediction of the delphinidin-3-O-glucoside and peonidin-3-o-glucoside as anti-inflammatory of TNF-α signaling. Acta Inform. Med. 27(3), 152-157.
Sato, E., Kohno, M., Hamano, H., Niwano, Y., 2006. Increased anti-oxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum. Nutr. 61(4), 157-160.
Satoh, K., Sakamoto, Y., Ogata, A., Nagai, F., Mikuriya, H., Numazawa, M., Yamada, K., Aoki, N., 2002. Inhibition of aromatase activity by green tea extract catechins and their endocrinological effects of oral administration in rats. Food Chem. Toxicol. 40(7), 925-933.
Semwal, D.K., Semwal, R.B., Combrinck, S., Viljoen, A., 2016. Myricetin: A dietary molecule with diverse biological activities. Nutrients 8(2), 90.
Shen, T., Wang, X.N., Lou, H.X., 2009. Natural stilbenes: An overview. Nat. Prod. Rep. 26(7), 916-935.
Silva, C.L., Haesen, N., Câmara, J.S., 2012. A new and improved strategy combining a dispersive-solid phase extraction-based multiclass method with ultra high pressure liquid chromatography for analysis of low molecular weight polyphenols in vegetables. J. Chromatogr. 1260, 154-163.
Stompor-Gorący, M., Machaczka, M., 2021. Recent advances in biological activity, new formulations and prodrugs of ferulic acid. Int. J. Mol. Sci. 22(23), 12889.
Taiwo, F.O., Oyedeji, O., Osundahunsi, M.T., 2019. Antimicrobial and antioxidant properties of kaempferol-3-O-glucoside and 1-(4-hydroxyphenyl)-3-phenylpropan-1-one isolated from the leaves of Annona muricata (Linn.). J. Pharm. Res. Int. 26, 1-13.
Țigu, A.B., Moldovan, C.S., Toma, V.A., Farcaș, A.D., Moț, A.C., Jurj, A., Fischer-Fodor, E., Mircea, C., Pârvu, M., 2021. Phytochemical analysis and in vitro effects of Allium fistulosum L. and Allium sativum L. extracts on human normal and tumor cell lines: A comparative study. Molecules 26(3), 574.
Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., Vidović, S., 2016. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 29, 502-511.
Upadhyay, R., Mohan Rao, L.J., 2013. An outlook on chlorogenic acids-Occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr. 53(9), 968-984.
Ushimaru, P.I., Barbosa, L.N., Fernandes, A.A., Di Stasi, L.C., Fernandes, A., 2012. In vitro antibacterial activity of medicinal plant extracts against Escherichia coli strains from human clinical specimens and interactions with antimicrobial drugs. Nat. Prod. Res. 26(16), 1553-1557.
Venditti, A., Bianco, A., 2020. Sulfur-containing secondary metabolites as neuroprotective agents. Curr. Med. Chem. 27(26), 4421-4436.
Wallace, T.C., Giusti, M.M., 2015. Anthocyanins. Adv. Nutr. 6(5), 620-622.
Wang, J., Jiang, Z., 2022. Synthesis, characterisation, antioxidant and antibacterial properties of p‐hydroxybenzoic acid‐grafted chitosan conjugates. Int. J. Food Sci. Technol. 57(2), 1283-1290.
Wang, Q., Wei, H.C., Zhou, S.J., Li, Y., Zheng, T.T., Zhou, C.Z., Wan, X.H., 2022. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother. Res. 36(7), 2779-2802.
Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., Gao, Y., 2016. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 56, 21-38.
Xia, J., Wan, Y., Wu, J.J., Yang, Y., Xu, J.F., Zhang, L., Peng, C., 2022. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: Targeting underlying properties of diseases. Crit. Rev. Food Sci. Nutr. 1-31.
Yang, D., Dunshea, F.R., Suleria, H.A.R., 2020. LC‐ESI‐QTOF/MS characterization of Australian herb and spices (garlic, ginger, and onion) and potential antioxidant activity. J. Food Process Preserv. 44(7), e14497.
Yao, L., Liu, W., Bashir, M., Nisar, M.F., Wan, C.C., 2022. Eriocitrin: A review of pharmacological effects. Biomed. Pharmacother. 154, 113563.
Zhang, J., Li, L., Kim, S.H., Hagerman, A.E., Lü, J., 2009. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res. 26(9), 2066-2080.
Zhang, Y., Liu, X., Ruan, J., Zhuang, X., Zhang, X., Li, Z., 2020. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed. Pharmacother. 123, 109730.
Zhou, X., Wang, F., Zhou, R., Song, X., Xie, M., 2017. Apigenin: A current review on its beneficial biological activities. J. Food Biochem. 41(4), e12376.