Maximizing total efficiency by resource reallocation in DEA: A case study on Tehran Stock Exchange
محورهای موضوعی : مجله بین المللی ریاضیات صنعتی
1 - Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Mathematics, Damghan Branch, Islamic Azad University, Damghan, Iran
کلید واژه: Efficiency, DEA, DMU, Reallocation, Data Envelopment Analysis,
چکیده مقاله :
Data Envelopment Analysis is a technique based on mathematical planning for specifying the efficiency of decision making units (DMUs). In some cases, manager is not going to add a new resource but to reallocate one of the previous resources. Reallocating a resource may be done for different purposes and has different benefits. For example, without adding a new resource and only using the same resources, is it possible to increase the efficiency of one unit or even increase the efficiency of the whole system? In this paper, a mathematical model is presented that can be used to reallocate one of the previous available resources between units in such a way that the total efficiency of decision-making units reaches the maximum possible value. In this model, in order to prevent excessive reduction of the share of each unit of the desired source, restrictions have been considered. In these constraints, a lower bound for the share of each unit is specified. Also, reallocating a resource is likely to lead some changes in output values of decision-making units. In the presented model, some constraints are considered that specify an upper bound for outputs produced by the units. There are other restrictions in this model. The first is that the total share of units from the desired resource should not exceed the amount available of it and the second is that the total output produced by all units should be at least equal to the total output produced before reallocation. The model presented in this article, in addition to considering the restrictions described, all of which are unavoidable, has been transformed into a linear programming model that can be solved by many existing software.
تجزیه و تحلیل پوششی داده ها یک تکنیک مبتنی بر برنامه ریزی ریاضی برای تعیین کارایی واحدهای تصمیم گیری (DMU) است. در برخی موارد ، مدیر قصد ندارد یک منبع جدید اضافه کند ، بلکه یکی از منابع قبلی را مجدداً تخصیص می دهد. تخصیص مجدد منابع ممکن است با اهداف مختلف انجام شود و مزایای متفاوتی داشته باشد. به عنوان مثال ، بدون افزودن منبع جدید و تنها با استفاده از منابع یکسان ، آیا می توان بازده یک واحد را افزایش داد یا حتی کارایی کل سیستم را افزایش داد؟ در این مقاله ، یک مدل ریاضی ارائه شده است که می تواند برای تخصیص مجدد یکی از منابع موجود قبلی بین واحدها به گونه ای استفاده شود که کارایی کل واحدهای تصمیم گیرنده به حداکثر مقدار ممکن برسد. در این مدل ، به منظور جلوگیری از کاهش بیش از حد سهم هر واحد از منبع مورد نظر ، محدودیت هایی در نظر گرفته شده است. در این محدودیت ها ، حد پایینی برای سهم هر واحد مشخص شده است. همچنین ، تخصیص مجدد منابع به احتمال زیاد منجر به تغییراتی در مقادیر خروجی واحدهای تصمیم گیرنده می شود. در مدل ارائه شده ، برخی از محدودیت ها در نظر گرفته می شوند که حد بالایی را برای خروجی های تولید شده توسط واحدها مشخص می کند. محدودیت های دیگری در این مدل وجود دارد. اول این که سهم کل واحدها از منبع مورد نظر نباید از مقدار موجود آن بیشتر باشد و دوم این که کل خروجی تولید شده توسط همه واحدها باید حداقل برابر کل خروجی تولید شده قبل از تخصیص مجدد باشد. مدل ارائه شده در این مقاله ، علاوه بر در نظر گرفتن محدودیت های توصیف شده ، که همه آنها اجتناب ناپذیر هستند ، به یک مدل برنامه ریزی خطی تبدیل شده است که توسط بسیاری از نرم افزارهای موجود قابل حل است.
[1] A. Amirteimoori, S. Kordrostami, Allocating fixed costs and target setting: A DEAbased approach, Applied Mathematics and Computation 171 (2005) 136-151.
[2] A. Amirteimoori, M. Shafiei, Characterizing an equitable omission of shared resources: A DEA-based approach, Applied Mathematics and Computation 177 (2006) 18-23.
[3] Q. An, Y. Wen, B. Xiong, M. Yang, X. Chen, Allocation of carbon dioxide emission permits with theminimum cost for Chinese provinces in big data environment, Journal of cleaner production 142 (2017) 886-893.
[4] J. Aparicio, J. F. Monge, J. T. Pastor, New centralized resource allocation DEA models under constant returns to scale, Boletin de Estadistica e Investigacion Operativa 11 (2012) 110-130.
[5] M. Asmild, J. C. Paradi, J. T. Pastor, Centralized resource allocation BCC models, OMEGA 37 (2009) 40-49.
[6] M. Asmild, J. C. Paradi, J. T. Pastor, DEA based models for reallocation of police personnel, OR Spectrum 34 (2012) 921-941.
[7] A. D. Athanassopoulos, Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: allocating central grants to the Greek local authorities, European Journal of Operational Research 87 (1995) 535-550.
[8] A. D. Athanassopoulos, Decision support for target-based resource allocation of public services in multiunit and multilevel systems, Management Science 44 (1998) 173-187. http://dx.doi.org/10.1287/mnsc.44.2.173/
[9] A. D. Athanassopoulos, N. Lambroukos, L. Seiford, Data envelopment scenario analysis for setting targets to electricity generating plants, European Journal of Operational Research 115 (1999) 413-428.
[10] R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science 30 (1984) 1078-1092.
[11] J. E. Beasley, Allocating Fixed Costs and Resources Via Data Envelopment Analysis, European Journal of Operational Research 147 (2003) 198-216.
[12] G. Bi, J. Ding, Y. Luo, L. Liang, Resource allocation and target setting for parallel production system based on DEA, Applied Mathematical Modelling 35 (2011) 4270-4280.
[13] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research 2 (1978) 429-444.
[14] W. D. Cook, M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach, European Journal of Operational Research 119 (1999) 652-661.
[15] W. D. Cook, J. Zhu, Allocation of shared costs among decision making units: A DEA approach, Computers & Operations Research 32 (2005) 2171-2178.
[16] W. D. Cook, L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on, European Journal Operational Research 192 (2009) 1-17.
[17] W. W. Cooper, L. M. Seiford, J. Zhu, Handbook on data envelopment analysis, NewYork: Springer (2011).
[18] S. Daneshvar, G. Izbirak, B. Vizvari, A. A. Hosseiny, Modification of centralized resource allocation model with variable return to scale using facet analysis, Journal of Basic and Applied Scientific Research 2 (2012) 6182-6187.
[19] J. Du, W. D. Cook, L. Liang, J. Zhu, Fixed cost and resource allocation based on DEA cross-efficiency, European Journal of Operational Research 235 (2014) 206-214.
[20] L. Fang, Centralized resource allocation based on efficiency analysis for step-by-step improvementpaths, Omega 51 (2015) 24-28.
[21] R. F¨are, S. Grosskopf, S. K. Li, Linear programming models for firm and industry performance, Scandinavian Journal of Economics 94 (1992) 599-608.
[22] B. Golany, E. Tamir, Evaluating efficiencyeffectiveness-equality tradeoffs: A data envelopment analysis approach, Management Science 41 (1995) 1172-1184.
[23] B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis, Journal of the Operational Research Society 11 (1988) 725-734.
[24] A. Hadi Vencheh, A. A. Foroughi, M. Soleimani damaneh, A DEA model for resource allocation, Economic Modeling 25 (2008) 983-993.
[25] F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi, K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach, Computers & Industrial Engineering 64 (2013) 631-640.
[26] Li, Hong, Wei Yang, Zhixiang Zhou, Chengming Huang, Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods, Mathematical and Computer Modelling 58 (2013) 913-926.
[27] Huaqing Wu, Shaofu Du, Liang Liang, Yafang Zhou, A DEA-based approach for fair reduction and reallocation of emission permits, Mathematical and Computer Modelling 58 (2013) 1095-1101.
[28] A. Hatami-Marbini, M. Tavana, P. J. Agrell, F. H. Lotfi, Z. G. Beigi, A common-weights DEA model for centralized resource reduction and target setting Computers & Industrial Engineering 79 (2015) 195-203.
[29] Hidemichi Fujii, Shunsuke Managi, Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors, Global Environmental Change (2015) 1450-1459
[30] G. R. Jahanshahloo, J. Sadeghi, M. Khodabakhshi, Proposing a method for fixed cost allocation using DEA based on the efficiency invariance and common set of weights principles, Mathematical Methods of Operations Research 85 (2017) 223-240.
[31] P. Korhonen, M. Syrj¨anen, Resource allocation based on efficiency analysis, Management Science 50 (2004) 1134-1144.
[32] S. Kordrostami, A. Amirteimoori, S. Fazeli Sandiyani, Resources reallocation to maintain stability efficient frontiers in the regions, Journal Operations Research and its Applications 31 (2011) 93-105.
[33] M. Khatibi, B. Rahmani parchikolaei, B. Daneshia, S. Kordrostami, Organizations efficiency evaluation by reallocation of human resources, Journal of Data Envelopment Analysis and Decision Science 1 (2015) 50-57.
[34] Y. F. Li, A. Li, L. Emrouznejad, Q. Liang Xie, Allocating the Fixed Cost: An Approach based on Data Envelopment Analysis and Cooperative Game, Annals of Operations Research 274 (2018) 373-394.
[35] Y. Li, M. Yang, Y. Chen, Q. Dai, L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree, Omega 41 (2013) 55-60.
[36] F. Li, Q. Zhu, L. Liang, A new data envelopment analysis based approach for fixed cost allocation, Annals of perations
Research (2018) http://dx.doi.org/10.1007/s10479-018-2819-x/
[37] F. Li, J. Song, A. Dolgui, L. Liang, Using common weights and efficiency invariance principles for resource allocation and target setting, International Journal of Production Research 55 (2017) 4982-4997.
[38] F. Li, Q. Zhu, Z. Chen, Allocating a fixed cost across the decision making units with two-stage network structures, Omega (2018) http://dx.doi.org/10.1016/j.omega.2018.02.009x/.
[39] F. Li, Q. Zhu, L. Liang, Allocating a fixed cost based on a DEA-game cross efficiency approach, Expert Systems with Applications 96 (2018) 196-207.
[40] R. Lin, Allocating fixed costs and common revenue via data envelopment analysis, Applied Mathematics and Computation 218 (2011) 3680-3688.
[41] S. Lozano, G. Villa, Centralized resource allocation using data envelopment analysis, Journal of Productivity Analysis 22 (2004) 143-161.
[42] S. Lozano, G. Villa, , R. Br¨annlund, Centralised reallocation of emission permits using DEA, European Journal of Operational Research 193 (2009) 752-760.
[43] E. Momeni, F. Hosseinzadeh Lotfi, R. Farzipoor Saen, E. Najafi, Centralized DEAbased reallocation of emission permits under cap and trade regulation, Journal of Cleaner Production 234 (2019) 306-314.
[44] E. V. Pachkova, Restricted reallocation of resources, European Journal of Operational Research 196 (2009 ) 1049-1057.
[45] M. Redclift, Sustainable development (1987-2005): an oxymoron comes of age, Sustainabledevelopment 13 (2005) 212-227.
[46] B. Rahmani Parchikolaei, G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, Centralized resource allocation MPSS models, American Journal of Scientific Research 57 (2012) 47-55.
[47] J. H. Spangenberg, Pick simply the best: Sustainable development is about radical analysis and selectivesynthesis, not about old wine in new bottles, Sustainable development 21 (2013) 101-111.
[48] C. Tanner, S. W¨olfing Kast, Promoting sustainable consumption: determinants of green purchases by Swiss consumers, Psychology & marketing 20 (2003) 883-902.
[49] Q. Wang, J-Ch. Cui, A resource allocation mode based on DEA models and elasticity analysis, The Ninth International Symposium on Operations Research and Its Applications (2010) 168-174.
[50] J. Wang, L. Wu, The impact of emotions on the intention of sustainable consumption choices: Evidence from a big city in an emerging country, Journal of cleaner production 126 (2016) 325-336.
[51] J. Wu, Q. An, S. Ali, L. Liang, DEA based resource allocation considering environmental factors, Mathematical and Computer Modelling 58 (2013) 1128-1137.
[52] H. Wu, S. Du, L. Liang, Y. Zhou, A DEAbased approach for fair reduction and reallocation of emission permits, Mathematical and computer modelling 58 (2013) 1095-1101.
[53] J. Wu, Q. Zhu, Q. An, J. Chu, X. Ji, Resource allocation based on contextdependent data envelopment analysis and a multi-objective linear programming approach, Computers & Industrial Engineering 101 (2016) 81-90.
[54] M. M. Yu, L.H. Chen, B. Hsiao, A fixed cost allocation based on the two-stage network data envelopment approach, Journal of Business Research 69 (2016) 1817-1822.
[55] P. Zhou, B. W. Ang, K. L. Poh, A survey of data envelopment analysis in energy and environmental studies, European journal of operational research 189 (2008) 1-18.
[56] W. Zhu, Q. Zhang, H. Wang, Fixed costs and shared resources allocation in twostage network DEA, Annals of Operations Research (2017) http://dx.doi.org/10.1007/s10479-017-2599-8/